iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-319-68542-7_41
View-Based 3D Model Retrieval Based on Distance Learning | SpringerLink
Skip to main content

View-Based 3D Model Retrieval Based on Distance Learning

  • Conference paper
  • First Online:
Cloud Computing and Security (ICCCS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10603))

Included in the following conference series:

  • 2620 Accesses

Abstract

As information technologies develop, 3D model retrieval is paid more and more attentions by researchers. But the limitations of image features poses a great challenge to view-based 3D model retrieval. In this paper, a novel 3D model retrieval method based on distance learning is introduced. The objective function with respective to two latent variables was formulated especially. The variables are the clique information in the original graph and the pairwise clique correspondence constrained by the one-to-one matching. The proposed method has the following benefits: (1) the local and global attributes of a graph with the designed structure can be preserved; (2) redundant and noisy information can be eliminated by strengthening inliers and suppressing outliers; and (3) the difficulty of defining high-order attributes and solving hyper-graph matching can be avoided. By extensive experiments on ETH, NTU60 and MV-RED datasets with Zernike moments, Histograms of Oriented Gradients (HoG) and convolutional neural networks (CNN) features, the effectiveness of the proposed method could be tested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Regli, W.C., Cicirello, V.A.: Managing digital libraries for computer-aided design. Comput. Aided Des. 32, 119–132 (2000)

    Article  Google Scholar 

  2. Yeh, J., Chen, D., Chen, B., Ouhyoung, M.: A web-based three-dimensional protein retrieval system by matching visual similarity. BMC 21, 3056 (2005)

    Google Scholar 

  3. Guetat, G., Maitre, M., Joly, L., Lai, S.L., Lee, T., Shinagawa, Y.: Automatic 3-D grayscale volume matching and shape analysis. IEEE Trans. Inf. Technol. Biomed. 10, 362–376 (2006)

    Article  Google Scholar 

  4. Vinayak, Murugappan, S., Liu, H., Ramani, K.: Shape-it-up: hand gesture based creative expression of 3D shapes using intelligent generalized cylinders. Comput. Aided Des. 45, 277–287 (2013)

    Article  Google Scholar 

  5. Wong, H., Ma, B., Yu, Z., Yeung, P.: 3-D head model retrieval using a single face view query. IEEE Trans. Multimedia 9, 1026–1036 (2007)

    Article  Google Scholar 

  6. Bu, S., Liu, Z., Han, J., Wu, J., Ji, R.: Learning high-level feature by deep belief networks for 3-D model retrieval and recognition. IEEE Trans. Multimedia 16, 2154–2167 (2014)

    Article  Google Scholar 

  7. Del Bimbo, A., Pala, P.: Content-based retrieval of 3D models. ACM Trans. Multimedia Comput. Commun. Appl. 2, 20–43 (2006)

    Article  Google Scholar 

  8. Wang, F., Li, F., Dai, Q.: View-based 3D object retrieval and recognition using tangent subspace analysis. In: Proceedings of SPIE, vol. 6822, pp. 68220I–68220I-11 (2008)

    Google Scholar 

  9. Li, W., Bebis, G., Bourbakis, N.G.: 3-D object recognition using 2-D views. IEEE Trans. Image Process. 17, 2236–2255 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Lu, K., He, N., Xue, J., Dong, J., Shao, L.: Learning view-model joint relevance for 3D object retrieval. IEEE Trans. Image Process. 24, 1449 (2015)

    Article  MathSciNet  Google Scholar 

  11. Gao, Y., Wang, M., Tao, D., Ji, R., Dai, Q.: 3-D object retrieval and recognition with hypergraph analysis. IEEE Trans. Image Process. 21, 4290–4303 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  12. Osada, R., Funkhouser, T., Chazelle, B., Dobkin, D.: Shape distributions. ACM Trans. Graph. 21, 807–832 (2002)

    Article  MATH  Google Scholar 

  13. Kim, W.Y., Kim, Y.S.: A region-based shape descriptor using Zernike moments. Signal Process.-Image Commun. 16, 95–102 (2000)

    Article  Google Scholar 

  14. Paquet, E., Rioux, M., Murching, A., Naveen, T., Tabatabai, A.: Description of shape information for 2-D and 3-D objects. Signal Process.-Image Commun. 16, 103–122 (2000)

    Article  Google Scholar 

  15. Gao, Y., Dai, Q., Wang, M., Zhang, N.: 3D model retrieval using weighted bipartite graph matching. Signal Process.-Image Commun. 26, 39–47 (2011)

    Article  Google Scholar 

  16. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 18th Computer Vision and Pattern Recognition, pp. 886–893. IEEE Press, San Diego (2005)

    Google Scholar 

  17. Nie, W., Liu, A., Gao, Z., Su, Y.: Clique-graph matching by preserving global and local structure. In: 28th Computer Vision and Pattern Recognition, pp. 4503–4510. IEEE Press, Boston (2015)

    Google Scholar 

  18. Leibe, B., Schiele, B.: Analyzing appearance and contour based methods for object categorization. In: 16th Computer Vision and Pattern Recognition, pp. 409–415. IEEE Press, Boston (2003)

    Google Scholar 

  19. Hu, B., Liu, Y., Gao, S., Sun, R., Xian, C.: Parallel relevance feedback for 3D model retrieval based on fast weighted-center particle swarm optimization. Pattern Recognit. 43, 2950–2961 (2010)

    Article  MATH  Google Scholar 

  20. Shih, J., Lee, C., Wang, J.: A new 3D model retrieval approach based on the elevation descriptor. Pattern Recognit. 40, 283–295 (2007)

    Article  MATH  Google Scholar 

  21. Gao, Y., Dai, Q., Zhang, N.: 3D model comparison using spatial structure circular descriptor. Pattern Recognit. 43, 1142–1151 (2007)

    Article  MATH  Google Scholar 

  22. Gao, Y., Tang, J., Li, H., Dai, Q., Zhang, N.: View-based 3D model retrieval with probabilistic graph model. Neurocomputing 73, 1900–1905 (2010)

    Article  Google Scholar 

  23. Wang, X., Nie, W.: 3D model retrieval with weighted locality-constrained group sparse coding. Neurocomputing 151, 620–625 (2015)

    Article  Google Scholar 

  24. Chen, D., Tian, X., Shen, Y., Ming, O.: On visual similarity based 3D model retrieval. Comput. Graph. Forum 22, 223–232 (2010)

    Article  Google Scholar 

  25. Ankerst, M., Kastenmüller, G., Kriegel, H.-P., Seidl, T.: 3D shape histograms for similarity search and classification in spatial databases. In: Güting, R.H., Papadias, D., Lochovsky, F. (eds.) SSD 1999. LNCS, vol. 1651, pp. 207–226. Springer, Heidelberg (1999). doi:10.1007/3-540-48482-5_14

    Chapter  Google Scholar 

  26. Ansary, T.F., Daoudi, M., Vandeborre, J.P.: A Bayesian 3-D search engine using adaptive views clustering. IEEE Trans. Multimedia 9, 78–88 (2007)

    Article  Google Scholar 

  27. Daras, P., Axenopoulos, A.: A 3D shape retrieval framework supporting multimodal queries. IEEE Trans. Multimedia 9, 78–88 (2007)

    Article  Google Scholar 

  28. Gori, M., Maggini, M., Sarti, L.: Exact and approximate graph matching using random walks. IEEE Trans. Pattern Anal. Mach. Intell. 27, 1100–1111 (2005)

    Article  Google Scholar 

  29. Van Wyk, B.J., Van Wyk, M.A.: A POCS-based graph matching algorithm. IEEE Trans. Pattern Anal. Mach. Intell. 26, 1526–1530 (2004)

    Article  Google Scholar 

  30. Gao, Y., Tang, J., Hong, R., Yan, S., Dai, Q., Zhang, N., Chua, T.S.: Camera constraint-free view-based 3-D object retrieval. IEEE Trans. Image Process. 21, 2269–2281 (2012)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China (61472275, 61502337), the Tianjin Research Program of Application Foundation and Advanced Technology (15JCYBJC16200), the grant of China Scholarship Council (201506255073), the grant of Elite Scholar Program of Tianjin University (2014XRG-0046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nannan Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shi, Y., Liu, N., Long, X., Xu, L. (2017). View-Based 3D Model Retrieval Based on Distance Learning. In: Sun, X., Chao, HC., You, X., Bertino, E. (eds) Cloud Computing and Security. ICCCS 2017. Lecture Notes in Computer Science(), vol 10603. Springer, Cham. https://doi.org/10.1007/978-3-319-68542-7_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68542-7_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68541-0

  • Online ISBN: 978-3-319-68542-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics