iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-319-67885-6_5
Simplicial Complex Entropy | SpringerLink
Skip to main content

Simplicial Complex Entropy

  • Conference paper
  • First Online:
Mathematical Methods for Curves and Surfaces (MMCS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10521))

  • 1011 Accesses

Abstract

We propose an entropy function for simplicial complices. Its value gives the expected cost of the optimal encoding of sequences of vertices of the complex, when any two vertices belonging to the same simplex are indistinguishable. We focus on the computational properties of the entropy function, showing that it can be computed efficiently. Several examples over complices consisting of hundreds of simplices show that the proposed entropy function can be used in the analysis of large sequences of simplicial complices that often appear in computational topology applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Attali, D., Lieutier, A., Salinas, D.: Efficient data structure for representing and simplifying simplicial complexes in high dimensions. Int. J. Comput. Geom. Appl. 22(04), 279–303 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ay, N., Olbrich, E., Bertschinger, N., Jost, J.: A geometric approach to complexity. Chaos 21(3), 22 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Csiszár, I., Körner, J., Lovász, L., Marton, K., Simonyi, G.: Entropy splitting for antiblocking corners and perfect graphs. Combinatorica 10(1), 27–40 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dantchev, S., Ivrissimtzis, I.: Efficient construction of the Čech complex. Comput. Graph. 36(6), 708–713 (2012)

    Article  Google Scholar 

  5. de Silva, V., Ghrist, R.: Coverage in sensor networks via persistent homology. Algebraic Geom. Topol. 7, 339–358 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. de Silva, V., Carlsson, G.: Topological estimation using witness complexes. In: Alexa, M., Rusinkiewicz, S. (eds.) Eurographics Symposium on Point-Based Graphics. ETH, Zürich (2004)

    Google Scholar 

  7. Edelsbrunner, H.: The union of balls and its dual shape. Discrete Comput. Geom. 13(1), 415–440 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. In: FOCS 2000, p. 454. IEEE (2000)

    Google Scholar 

  9. Guibas, L.J., Oudot, S.Y.: Reconstruction using witness complexes. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2007, pp. 1076–1085, Philadelphia, PA, USA. SIAM (2007)

    Google Scholar 

  10. Korner, J., Marton, K.: New bounds for perfect hashing via information theory. Eur. J. Comb. 9(6), 523–530 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  11. Körner, J.: Coding of an information source having ambiguous alphabet and the entropy of graphs. In: 6th Prague Conference on Information Theory, pp. 411–425 (1973)

    Google Scholar 

  12. Simonyi, G.: Graph entropy: a survey. Comb. Optim. 20, 399–441 (1995)

    MathSciNet  MATH  Google Scholar 

  13. Vejdemo-Johansson, M.: Interleaved computation for persistent homology. CoRR, abs/1105.6305 (2011)

    Google Scholar 

  14. Wales, D.J., Ulker, S.: Structure and dynamics of spherical crystals characterized for the Thomson problem. Phys. Rev. B 74(21), 212101 (2006)

    Article  Google Scholar 

  15. Zomorodian, A.: Fast construction of the Vietoris-Rips complex. Comput. Graph. 34, 263–271 (2010)

    Article  Google Scholar 

  16. Zomorodian, A., Carlsson, G.: Computing persistent homology. Discrete Comput. Geom. 33(2), 249–274 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

This research was partially supported by the EPRSC Grant EP/K016687/1 “Topology, Geometry and Laplacians of Simplicial Complexes”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Ivrissimtzis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Dantchev, S., Ivrissimtzis, I. (2017). Simplicial Complex Entropy. In: Floater, M., Lyche, T., Mazure, ML., Mørken, K., Schumaker, L. (eds) Mathematical Methods for Curves and Surfaces. MMCS 2016. Lecture Notes in Computer Science(), vol 10521. Springer, Cham. https://doi.org/10.1007/978-3-319-67885-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67885-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67884-9

  • Online ISBN: 978-3-319-67885-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics