iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-319-67675-3_12
Unbiased Diffeomorphic Mapping of Longitudinal Data with Simultaneous Subject Specific Template Estimation | SpringerLink
Skip to main content

Unbiased Diffeomorphic Mapping of Longitudinal Data with Simultaneous Subject Specific Template Estimation

  • Conference paper
  • First Online:
Graphs in Biomedical Image Analysis, Computational Anatomy and Imaging Genetics (GRAIL 2017, MICGen 2017, MFCA 2017)

Abstract

Longitudinal mapping techniques for neuroimage analysis in computational anatomy have an important potential for bias associated to the order of input scans. Geodesic trajectories which pass from a template onto a baseline image and then through each follow up image have been shown to overestimate atrophy rate in the entorhinal cortex, while the reverse is true for trajectories pass through the data in the opposite order. We propose a method to remove this source of bias by inserting a patient specific template into a time series at a specific point to be estimated from the data, and simultaneously producing a time varying mapping connecting each image in the series. We demonstrate the efficacy of this method using segmentations of the entorhinal and surrounding cortex in subjects with early Alzheimer’s disease.

Alzheimer’s Disease Neuroimaging Initiative—Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Data used in the preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), positron emission tomography (PET), other biological markers, and clinical and neuropsychological assessment can be combined to measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). For up-to-date information, see www.adni-info.org.

References

  1. Braak, H., Braak, E.: Neuropathological stageing of alzheimer-related changes. Acta Neuropathol. 82, 239–259 (1991). doi:10.1007/BF00308809

    Article  Google Scholar 

  2. Ding, S.L., Van Hoesen, G.W.: Borders, extent, and topography of human perirhinal cortex as revealed using multiple modern neuroanatomical and pathological markers. Hum. Brain Mapp. 31(9), 1359–1379 (2010)

    Article  Google Scholar 

  3. Dupuis, P., Grenander, U., Miller, M.I.: Variational problems on flows of diffeomorphisms for image matching. Q. Appl. Math. 56, 587–600 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Durrleman, S., Allassonnière, S., Joshi, S.: Sparse adaptive parameterization of variability in image ensembles. Int. J. Comput. Vis. 101(1), 161–183 (2013). doi:10.1007/s11263-012-0556-1

    Article  MathSciNet  MATH  Google Scholar 

  5. Durrleman, S., Pennec, X., Trouvé, A., Braga, J., Gerig, G., Ayache, N.: Toward a comprehensive framework for the spatiotemporal statistical analysis of longitudinal shape data. Int. J. Comput. Vis. 103(1), 22–59 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fischl, B.: Freesurfer. Neuroimage 62(2), 774–781 (2012)

    Article  Google Scholar 

  7. Fletcher, P.T.: Geodesic regression and the theory of least squares on riemannian manifolds. Int. J. Comput. Vis. 105(2), 171–185 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gao, Y., Zhang, M., Grewen, K., Fletcher, P.T., Gerig, G.: Image registration and segmentation in longitudinal mri using temporal appearance modeling. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), pp. 629–632. IEEE (2016)

    Google Scholar 

  9. Grenander, U., Miller, M.I.: Computational anatomy: an emerging discipline. Q. Appl. Math. 56(4), 617–694 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Insausti, R., Juottonen, K., Soininen, H., Insausti, A.M., Partanen, K., Vainio, P., Laakso, M.P., Pitkänen, A.: MR volumetric analysis of the human entorhinal, perirhinal, and temporopolar cortices. Am. J. Neuroradiol. 19(4), 659–671 (1998)

    Google Scholar 

  11. Jain, S., Tward, D.J., Lee, D.S., Kolasny, A., Brown, T., Ratnanather, J.T., Miller, M.I., Younes, L.: Computational anatomy gateway: leveraging xsede computational resources for shape analysis. In: Proceedings of the 2014 Annual Conference on Extreme Science and Engineering Discovery Environment, p. 54. ACM (2014)

    Google Scholar 

  12. Joshi, S., Miller, M.: Landmark matching via large deformation diffeomorphisms. IEEE Trans. Image Process. 9(8), 1357–70 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ma, J., Miller, M.I., Trouvé, A., Younes, L.: Bayesian template estimation in computational anatomy. NeuroImage 42(1), 252–261 (2008)

    Article  Google Scholar 

  14. Ma, J., Miller, M.I., Younes, L.: A bayesian generative model for surface template estimation. J. Biomed. Imaging 2010, 16 (2010)

    Google Scholar 

  15. Miller, M.I., Ratnanather, J.T., Tward, D.J., Brown, T., Lee, D.S., Ketcha, M., Mori, K., Wang, M.C., Mori, S., Albert, M.S., et al.: Network neurodegeneration in alzheimer’s disease via mri based shape diffeomorphometry and high-field atlasing. Front. Bioeng. Biotechnol. 3, 54 (2015)

    Article  Google Scholar 

  16. Miller, M.I., Trouvé, A., Younes, L.: Geodesic shooting for computational anatomy. J. Math. Imaging Vis. 24(2), 209–228 (2006)

    Article  MathSciNet  Google Scholar 

  17. Miller, M.I., Trouvé, A., Younes, L.: Hamiltonian systems and optimal control in computational anatomy: 100 years since d’arcy thompson. Ann. Rev. Biomed. Eng. 17, 447–509 (2015)

    Article  Google Scholar 

  18. Petersen, R.C.: Mild cognitive impairment as a diagnostic entity. J. Intern. Med. 256(3), 183–194 (2004)

    Article  Google Scholar 

  19. Qiu, A., Younes, L., Miller, M.: Principal component based diffeomorphic surface mapping. IEEE Trans. Med. Imaging 31(2), 302–311 (2012)

    Article  Google Scholar 

  20. Reuter, M., Schmansky, N.J., Rosas, H.D., Fischl, B.: Within-subject template estimation for unbiased longitudinal image analysis. Neuroimage 61(4), 1402–1418 (2012)

    Article  Google Scholar 

  21. Schiratti, J.B., Allassonniere, S., Colliot, O., Durrleman, S.: Learning spatiotemporal trajectories from manifold-valued longitudinal data. In: Advances in Neural Information Processing Systems, pp. 2404–2412 (2015)

    Google Scholar 

  22. Singh, N., Hinkle, J., Joshi, S., Fletcher, P.T.: Hierarchical geodesic models in diffeomorphisms. Int. J. Comput. Vis. 117(1), 70–92 (2016)

    Article  MathSciNet  Google Scholar 

  23. Towns, J., Cockerill, T., Dahan, M., Foster, I., Gaither, K., Grimshaw, A., Hazlewood, V., Lathrop, S., Lifka, D., Peterson, G.D., et al.: Xsede: accelerating scientific discovery. Comput. Sci. Eng. 16(5), 62–74 (2014)

    Article  Google Scholar 

  24. Tward, D., Miller, M., Trouve, A., Younes, L.: Parametric surface diffeomorphometry for low dimensional embeddings of dense segmentations and imagery. IEEE Trans. Pattern Anal. Mach. Intell. 39, 1195–1208 (2016)

    Article  Google Scholar 

  25. Tward, D.J., Kolasny, A., Sicat, C.S., Brown, T., Miller, M.I.: Tools for studying populations and timeseries of neuroanatomy enabled through gpu acceleration in the computational anatomy gateway. In: Proceedings of the XSEDE16 Conference on Diversity, Big Data, and Science at Scale, p. 15. ACM (2016)

    Google Scholar 

  26. Tward, D.J., Ma, J., Miller, M.I., Younes, L.: Robust diffeomorphic mapping via geodesically controlled active shapes. Int. J. Biomed. Imaging 2013, 1–19 (2013)

    Article  Google Scholar 

  27. Tward, D.J., Sicat, C.S., Brown, T., Bakker, A., Miller, M.I.: Reducing variability in anatomical definitions over time using longitudinal diffeomorphic mapping. In: Reuter, M., Wachinger, C., Lombaert, H. (eds.) SeSAMI 2016. LNCS, vol. 10126, pp. 51–62. Springer, Cham (2016). doi:10.1007/978-3-319-51237-2_5

    Chapter  Google Scholar 

  28. Zhang, M., Wells, W.M., Golland, P.: Low-dimensional statistics of anatomical variability via compact representation of image deformations. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 166–173. Springer, Cham (2016). doi:10.1007/978-3-319-46726-9_20

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by the Kavli Foundation. This work was supported by NIH grant R01EB020062-01A1. The imaging core of the BIOCARD project is supported by NIH grant U19AG033655-09. This work used the Extreme Science and Engineering Discovery Environment (XSEDE) [23], which is supported by National Science Foundation grant number ACI-1053575.

Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Daniel Tward .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Tward, D., Miller, M., the Alzheimer’s Disease Neuroimaging Initiative. (2017). Unbiased Diffeomorphic Mapping of Longitudinal Data with Simultaneous Subject Specific Template Estimation. In: Cardoso, M., et al. Graphs in Biomedical Image Analysis, Computational Anatomy and Imaging Genetics. GRAIL MICGen MFCA 2017 2017 2017. Lecture Notes in Computer Science(), vol 10551. Springer, Cham. https://doi.org/10.1007/978-3-319-67675-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67675-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67674-6

  • Online ISBN: 978-3-319-67675-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics