iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-319-65636-6_5
Space-Filling Curves based on Residue Number System | SpringerLink
Skip to main content

Space-Filling Curves based on Residue Number System

  • Conference paper
  • First Online:
Advances in Intelligent Networking and Collaborative Systems (INCoS 2017)

Abstract

Space-filling curves are a useful tool for fast multi-dimensional space indexing, dimension reduction, and fast optimization of complex problems. Several curves such as Hilbert, Peano, Gray, Morton or Z-order were discovered, and their properties and features were intensely studied. In this paper, a new space-filling curve is described, and its features are analyzed and compared with the other space-filling curves. The novel algorithm for a space-filling curve is based on the Residue Number System that is extensively studied during the last thirty years. The proposed curve has specific behavior and may be controlled by several parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Asano, T., Ranjan, D., Roos, T., Welzl, E., Widmayer, P.: Space-filling curves and their use in the design of geometric data structures. Theoret. Comput. Sci. 181(1), 3–15 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bially, T.: Space-filling curves: their generation and their application to bandwidth reduction. IEEE Trans. Inf. Theor. 15(6), 658–664 (1969)

    Article  Google Scholar 

  3. Butz, A.R.: Space filling curves and mathematical programming. Inf. Control 12(4), 314–330 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  4. Butz, A.R.: Alternative algorithm for Hilbert’s space-filling curve. IEEE Trans. Comput. 100(4), 424–426 (1971)

    Article  MATH  Google Scholar 

  5. Chen, H.L., Chang, Y.I.: Neighbor-finding based on space-filling curves. Inf. Syst. 30(3), 205–226 (2005)

    Article  Google Scholar 

  6. Gotsman, C., Lindenbaum, M.: On the metric properties of discrete space-filling curves. IEEE Trans. Image Process. 5(5), 794–797 (1996)

    Article  Google Scholar 

  7. Gottschau, M., Haverkort, H., Matzke, K.: Reptilings and space-filling curves for acute triangles. arXiv preprint arXiv:1603.01382 (2016)

  8. Jagadish, H.V.: Analysis of the Hilbert curve for representing two-dimensional space. Inf. Process. Lett. 62(1), 17–22 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jasrasaria, D., Pyzer-Knapp, E.O., Rappoport, D., Aspuru-Guzik, A.: Space-filling curves as a novel crystal structure representation for machine learning models. arXiv preprint arXiv:1608.05747 (2016)

  10. Kochhar, J.S., Foster, B.T., Heragu, S.S.: Hope: a genetic algorithm for the unequal area facility layout problem. Comput. Oper. Res. 25(7), 583–594 (1998)

    Article  MATH  Google Scholar 

  11. Liang, J.Y., Chen, C.S., Huang, C.H., Liu, L.: Lossless compression of medical images using Hilbert space-filling curves. Comput. Med. Imaging Graph. 32(3), 174–182 (2008)

    Article  Google Scholar 

  12. Liu, X.: Four alternative patterns of the Hilbert curve. Appl. Math. Comput. 147(3), 741–752 (2004)

    MathSciNet  MATH  Google Scholar 

  13. Ananda Mohan, P.V.: Residue Number Systems: Theory and Applications. Springer, Cham (2016)

    Book  MATH  Google Scholar 

  14. Mokbel, M.F., Aref, W.G., Kamel, I.: Performance of multi-dimensional space-filling curves. In: Proceedings of the 10th ACM International Symposium on Advances in Geographic Information Systems, pp. 149–154. ACM (2002)

    Google Scholar 

  15. Norman, M.G., Moscato, P.: The Euclidean traveling salesman problem and a space-filling curve. Chaos Solitons Fractals 6, 389–397 (1995)

    Article  MATH  Google Scholar 

  16. Omondi, A., Premkumar, B.: Residue Number Systems: Theory and Implementation. Advances in Computer Science and Engineering: Texts, Imperial College Press, London (2007)

    Google Scholar 

  17. Pan, C.H., Liu, S.Y.: A comparative study of order batching algorithms. Omega 23(6), 691–700 (1995)

    Article  Google Scholar 

  18. Wang, M.J., Hu, M.H., Ku, M.Y.: A solution to the unequal area facilities layout problem by genetic algorithm. Comput. Ind. 56(2), 207–220 (2005)

    Article  Google Scholar 

  19. Whitehead, B.A., Choate, T.D.: Evolving space-filling curves to distribute radial basis functions over an input space. IEEE Trans. Neural Netw. 5(1), 15–23 (1994)

    Article  Google Scholar 

  20. Yan, Y., Mostofi, Y.: Efficient clustering and path planning strategies for robotic data collection using space-filling curves. IEEE Trans. Contr. Netw. Syst. (99) (2016). http://ieeexplore.ieee.org/document/7480435/

  21. Yu, Z., Jinhai, L., Guochang, G., Rubo, Z., Haiyan, Y.: An implementation of evolutionary computation for path planning of cooperative mobile robots. In: Proceedings of the 4th World Congress on Intelligent Control and Automation, 2002, vol. 3, pp. 1798–1802. IEEE (2002)

    Google Scholar 

Download references

Acknowledgment

This work was supported by the Czech Science Foundation under the grant no. GJ16-25694Y and by the projects SP2017/100 “Parallel processing of Big Data IV”and SP2017/85 “Processing and advanced analysis of bio-medical data II”, of the Student Grant System, VŠB-Technical University of Ostrava.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Platoš .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Platoš, J., Nowaková, J., Krömer, P., Snášel, V. (2018). Space-Filling Curves based on Residue Number System. In: Barolli, L., Woungang, I., Hussain, O. (eds) Advances in Intelligent Networking and Collaborative Systems. INCoS 2017. Lecture Notes on Data Engineering and Communications Technologies, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-65636-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65636-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65635-9

  • Online ISBN: 978-3-319-65636-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics