iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-319-62428-0_37
A New Approach to Weakening and Destruction of Malicious Internet Networks | SpringerLink
Skip to main content

A New Approach to Weakening and Destruction of Malicious Internet Networks

  • Conference paper
  • First Online:
Advances in Soft Computing (MICAI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10062))

Included in the following conference series:

Abstract

Models and algorithms for weakening and destruction of malicious complex internet networks are widely studied in AI in recent years. These algorithms must detect critical links and nodes in a dynamic network whose removals maximally destroy or spoil the network’s functions. In this paper we propose a new approach for solution of this problem. Instead of removal of corresponding key segments of networks we initiate intentional misrepresentation in important sites leading to wrong network evolution that in fact is equivalent to weakening/destruction of the network. Specifically, we cause and study artificial decentralization and artificial fragmentation in the network. For simulation of these phenomena, we apply and develop a network model based on nonuniform random recursive trees, so called one-max constant-probability network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arulselvan, A., Commander, C.W., Elefteriadou, L., Pardalos, P.M.: Detecting critical nodes in sparse graphs. Comput. Oper. Res. 36(7), 2193–2200 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dinh, T.N., Xuan, Y., Thai, M.T., Park, E.K., Znati, T.: On approximation of new optimization methods for assessing network vulnerability. In: INFOCOM 2010, Proceedings of the IEEE Browse Conference Publications, pp. 1–9, San Diego, CA, March 2010

    Google Scholar 

  4. Dinh, T.N., Xuan, Y., Thai, M.T., Pardalos, P.M., Znati, T.: On new approaches of assessing network vulnerability: hardness and approximation. IEEE/ACM Trans. Netw. 20(2), 609–619 (2012)

    Article  Google Scholar 

  5. Gustedt, J.: Generalized attachment models for the genesis of graphs with high clustering coefficient. In: Fortunato, S., Mangioni, G., Menezes, R., Nicosia, V. (eds.) Complex Networks. Studies in Computational Intelligence, vol. 207, pp. 99–113. Springer, Berlin (2009). doi:10.1007/978-3-642-01206-8_9

    Chapter  Google Scholar 

  6. Katona, Z.: Levels of a scale-free tree. Random Struct. Algorithms 29(2), 194–207 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Korenblit, M., Talis, V., Levin, I.: One-max constant-probability models for complex networks. In: Contucci, P., Menezes, R., Omicini, A., Poncela-Casasnovas, J. (eds.) Complex Networks V. SCI, vol. 549, pp. 181–188. Springer, Cham (2014). doi:10.1007/978-3-319-05401-8_17

    Chapter  Google Scholar 

  8. Li, M., Gao, L., Zhou, W.: S-Kcore: a social-aware Kcore decomposition algorithm in pocket switched networks. In: IEEE/IFIP 2010: Proceedings of the IEEE/IFIP 8th International Conference Embedded and Ubiquitous Computing 2010, IEEE, Piscataway, N.J., pp. 737–742

    Google Scholar 

  9. Molisz, W., Rar, J.: End-to-end service survivability under attacks on networks. J. Telecommun. Inform. Technol. 3, 19–26 (2006)

    Google Scholar 

  10. Peixoto, T.P., Bornholdt, S.: Evolution of robust network topologies: emergence of central backbones. Phys. Rev. Lett. 109, 118703 (2012)

    Article  Google Scholar 

  11. Shen, Y., Dinh, T.N., Thai, M.T.: Adaptive algorithms for detecting critical links and nodes in dynamic networks. In: 2012 IEEE Military Communications Conference Browse Conference Publications, MILCOM 2012, pp. 1–6, Orlando, FL, 29 October–1 November 2012

    Google Scholar 

  12. Thompson, K.R.: Phoenix Algorithm: A Behavior-Predictive Algorithm. http://educology.indiana.edu/Thompson/Phoenix%20Algorithm.pdf

Download references

Acknowledgment

The author warmly thanks Eugene Levner for his helpful advises and interesting comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Korenblit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Korenblit, M. (2017). A New Approach to Weakening and Destruction of Malicious Internet Networks. In: Pichardo-Lagunas, O., Miranda-Jiménez, S. (eds) Advances in Soft Computing. MICAI 2016. Lecture Notes in Computer Science(), vol 10062. Springer, Cham. https://doi.org/10.1007/978-3-319-62428-0_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62428-0_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62427-3

  • Online ISBN: 978-3-319-62428-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics