Abstract
Recent advances in Computed Tomography Angiography provide high-resolution 3D images of the vessels. However, there is an inevitable requisite for automated and fast methods to process the increased amount of generated data. In this work, we propose a fast method for vascular skeleton extraction which can be combined with a segmentation algorithm to accelerate the vessel delineation. The algorithm detects central voxels - nodes - of potential vessel regions in the orthogonal CT slices and uses a convolutional neural network (CNN) to identify the true vessel nodes. The nodes are gradually linked together to generate an approximate vascular skeleton. The CNN classifier yields a precision of 0.81 and recall of 0.83 for the medium size vessels and produces a qualitatively evaluated enhanced representation of vascular skeletons.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Lidayová, K., Frimmel, H., Wang, C., Bengtsson, E., Smedby, Ö.: Fast vascular skeleton extraction algorithm. Pattern Recogn. Lett. 76, 67–75 (2016)
Kirbas, C., Quek, F.: A review of vessel extraction techniques and algorithms. ACM Comput. Surv. (CSUR) 36(2), 81–121 (2004)
Lesage, D., Angelini, E.D., Bloch, I., Funka-Lea, G.: A review of 3D vessel lumen segmentation techniques: models, features and extraction schemes. Med. Image Anal. 13(6), 819–845 (2009)
Charbonnier, J.P., van Rikxoort, E.M., Setio, A.A., Schaefer-Prokop, C.M., van Ginneken, B., Ciompi, F.: Improving airway segmentation in computed tomography using leak detection with convolutional networks. Med. Image Anal. 36, 52–60 (2017)
Merkow, J., Marsden, A., Kriegman, D., Tu, Z.: Dense volume-to-volume vascular boundary detection. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 371–379. Springer, Cham (2016). doi:10.1007/978-3-319-46726-9_43
Gülsün, M.A., Funka-Lea, G., Sharma, P., Rapaka, S., Zheng, Y.: Coronary centerline extraction via optimal flow paths and CNN path pruning. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 317–325. Springer, Cham (2016). doi:10.1007/978-3-319-46726-9_37
Yushkevich, P.A., Piven, J., Hazlett, H.C., Smith, R.G., Ho, S., Gee, J.C., Gerig, G.: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31(3), 1116–1128 (2006)
Tieleman, T., Hinton, G.: Lecture 6.5-RmsProp: divide the gradient by a running average of its recent magnitude. In: COURSERA: Neural Networks for ML (2012)
Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feed-forward neural networks. In: AISTATS, vol. 9, pp. 249–256 (2010)
Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)
Chollet, F.: Keras (2015). https://github.com/fchollet/keras.
Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplicity: the all convolutional net. In: Proceedings of 3rd International Conference on Learning Representations (ICLR) (2015)
Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift (2015). arXiv preprint arXiv:1502.03167
Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: 27th International Conference on Machine Learning, pp. 807–814 (2010)
Acknowledgements
Lidayová, Frimmel, Bengtsson, and Smedby have been supported by the Swedish Research Council (VR), grant no. 621-2014-6153. Gupta has been supported by Skype IT Academy Stipend Program, EU institutional grant IUT19-11 of Estonian Research Council.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Lidayová, K., Gupta, A., Frimmel, H., Sintorn, IM., Bengtsson, E., Smedby, Ö. (2017). Classification of Cross-sections for Vascular Skeleton Extraction Using Convolutional Neural Networks. In: Valdés Hernández, M., González-Castro, V. (eds) Medical Image Understanding and Analysis. MIUA 2017. Communications in Computer and Information Science, vol 723. Springer, Cham. https://doi.org/10.1007/978-3-319-60964-5_16
Download citation
DOI: https://doi.org/10.1007/978-3-319-60964-5_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-60963-8
Online ISBN: 978-3-319-60964-5
eBook Packages: Computer ScienceComputer Science (R0)