iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-319-60964-5_16
Classification of Cross-sections for Vascular Skeleton Extraction Using Convolutional Neural Networks | SpringerLink
Skip to main content

Classification of Cross-sections for Vascular Skeleton Extraction Using Convolutional Neural Networks

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2017)

Abstract

Recent advances in Computed Tomography Angiography provide high-resolution 3D images of the vessels. However, there is an inevitable requisite for automated and fast methods to process the increased amount of generated data. In this work, we propose a fast method for vascular skeleton extraction which can be combined with a segmentation algorithm to accelerate the vessel delineation. The algorithm detects central voxels - nodes - of potential vessel regions in the orthogonal CT slices and uses a convolutional neural network (CNN) to identify the true vessel nodes. The nodes are gradually linked together to generate an approximate vascular skeleton. The CNN classifier yields a precision of 0.81 and recall of 0.83 for the medium size vessels and produces a qualitatively evaluated enhanced representation of vascular skeletons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lidayová, K., Frimmel, H., Wang, C., Bengtsson, E., Smedby, Ö.: Fast vascular skeleton extraction algorithm. Pattern Recogn. Lett. 76, 67–75 (2016)

    Article  Google Scholar 

  2. Kirbas, C., Quek, F.: A review of vessel extraction techniques and algorithms. ACM Comput. Surv. (CSUR) 36(2), 81–121 (2004)

    Article  Google Scholar 

  3. Lesage, D., Angelini, E.D., Bloch, I., Funka-Lea, G.: A review of 3D vessel lumen segmentation techniques: models, features and extraction schemes. Med. Image Anal. 13(6), 819–845 (2009)

    Article  Google Scholar 

  4. Charbonnier, J.P., van Rikxoort, E.M., Setio, A.A., Schaefer-Prokop, C.M., van Ginneken, B., Ciompi, F.: Improving airway segmentation in computed tomography using leak detection with convolutional networks. Med. Image Anal. 36, 52–60 (2017)

    Article  Google Scholar 

  5. Merkow, J., Marsden, A., Kriegman, D., Tu, Z.: Dense volume-to-volume vascular boundary detection. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 371–379. Springer, Cham (2016). doi:10.1007/978-3-319-46726-9_43

    Chapter  Google Scholar 

  6. Gülsün, M.A., Funka-Lea, G., Sharma, P., Rapaka, S., Zheng, Y.: Coronary centerline extraction via optimal flow paths and CNN path pruning. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 317–325. Springer, Cham (2016). doi:10.1007/978-3-319-46726-9_37

    Chapter  Google Scholar 

  7. Yushkevich, P.A., Piven, J., Hazlett, H.C., Smith, R.G., Ho, S., Gee, J.C., Gerig, G.: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31(3), 1116–1128 (2006)

    Article  Google Scholar 

  8. Tieleman, T., Hinton, G.: Lecture 6.5-RmsProp: divide the gradient by a running average of its recent magnitude. In: COURSERA: Neural Networks for ML (2012)

    Google Scholar 

  9. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feed-forward neural networks. In: AISTATS, vol. 9, pp. 249–256 (2010)

    Google Scholar 

  10. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  11. Chollet, F.: Keras (2015). https://github.com/fchollet/keras.

  12. Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplicity: the all convolutional net. In: Proceedings of 3rd International Conference on Learning Representations (ICLR) (2015)

    Google Scholar 

  13. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift (2015). arXiv preprint arXiv:1502.03167

  14. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: 27th International Conference on Machine Learning, pp. 807–814 (2010)

    Google Scholar 

Download references

Acknowledgements

Lidayová, Frimmel, Bengtsson, and Smedby have been supported by the Swedish Research Council (VR), grant no. 621-2014-6153. Gupta has been supported by Skype IT Academy Stipend Program, EU institutional grant IUT19-11 of Estonian Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristína Lidayová .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Lidayová, K., Gupta, A., Frimmel, H., Sintorn, IM., Bengtsson, E., Smedby, Ö. (2017). Classification of Cross-sections for Vascular Skeleton Extraction Using Convolutional Neural Networks. In: Valdés Hernández, M., González-Castro, V. (eds) Medical Image Understanding and Analysis. MIUA 2017. Communications in Computer and Information Science, vol 723. Springer, Cham. https://doi.org/10.1007/978-3-319-60964-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60964-5_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60963-8

  • Online ISBN: 978-3-319-60964-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics