Abstract
Cardiovascular diseases (CVDs) remain as the primary causes of disability and mortality worldwide and are predicted to continue rise in the future due to inadequate preventive actions. Electrocardiogram (ECG) signal contains vital clinical information that assists significantly in the diagnosis of CVDs. Assessment of subtle ECG parameters that indicate the presence of CVDs are extremely difficult and requires long hours of manual examination for accurate diagnosis. Hence, automated computer-aided diagnosis systems might help in overcoming these limitations. In this study, a novel algorithm is proposed based on the combination of wavelet packet decomposition (WPD) and nonlinear features. The proposed method achieved classification results of 97.98% accuracy, 99.61% sensitivity and 94.84% specificity with 8 reliefF ranked features. The proposed methodology is highly efficient in helping clinical staff to detect cardiac abnormalities using a single algorithm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Acharya, U.R., Fujita, H., Sudarshan, V.K., Oh, S.L., Adam, M., Koh, J.E.W., Tan, J.H., Ghista, D.N., Martis, R.J., Chua, C.K., Poo, C.K., Tan, R.S.: Automated detection and localization of myocardial infarction using electrocardiogram: a comparative study of different leads. Knowl.-Based Syst. 99, 146–156 (2016a)
Acharya, U.R., Fujita, H., Adam, M., Lih, O.S., Sudarshan, V.K., Hong, T.J., Koh, E.W., Hagiwara, Y., Chua, C.K., Poo, C.K., San, T.R.: Automated characterization and classification of coronary artery disease and myocardial infarction by decomposition of ECG signals: a comparative study. Inf. Sci. 377, 17–29 (2016b)
Acharya, U.R., Kannathal, N., Krishnan, S.M.: Comprehensive analysis of cardiac health using heart rate signals. Physiol. Meas. J. 25, 1130–1151 (2004)
Acharya, U.R., Sudarshan, V.K., Koh, E.W., Martis, R.J., Tan, J.H., Oh, S.L., Adam, M., Hagiwara, Y., Mookiah, M.R.K., Chua, K.P., Chua, K.C., Tan, R.S.: Application of higher-order spectra for the characterization of coronary artery disease using electrocardiogram signals. Biomed. Sig. Process. Control 31, 31–43 (2017)
Arafat, S., Dohrmann, M., Skubic, M.: Classification of coronary artery disease stress ECGs using uncertainty modeling, 1-4244-0020-1. IEEE (2005)
Arif, M., Malagore, I.A., Afsar, F.A.: Detection and localization of myocardial infarction using k-nearest neighbor classifier. J. Med. Syst. 36, 279–289 (2012)
Babaoglu, I., Findik, O., Bayrak, M.: Effects of principle component analysis on assessment of coronary artery diseases using support vector machine. Expert Syst. Appl. 37, 2182–2185 (2010a). Elsevier
Babaoglu, I., Findik, O., Ulker, E.: A comparison of feature selection models utilizing binary particle swarm optimization and genetic algorithm in determining coronary artery disease using support vector machine. Expert Syst. Appl. 37, 3177–3183 (2010b). Elsevier
Bandt, C., Pompe, B.: Permutation entropy: a natural complexity measure for time series. Rev. Lett. 88, 174102 (2002)
Bezerianos, A., Tong, S., Thankor, N.: Time dependent entropy of the EEG rhythm changes following brain ischemia. Ann. Biomed. Eng. 31, 221–232 (2003)
Bui, A.L., Horwich, T.B., Fonarow, G.C.: Epidemiology and risk profile of heart failure. Nat. Rev. Cardiol. 8, 3041 (2011)
Buja, L.M., Willerson, J.T.: The role of coronary artery lesions in ischemic heart disease: insights from recent clinicopathologic, coronary arteriographic, and experimental studies. Hum. Pathol. 18, 451–461 (1987)
Buja, L.M., McAllister Jr., H.A.: Coronary artery disease: pathological anatomy and pathogenesis. In: Willerson, J.T., Cohn, J.N., Wellens, H.J.J., Holmes Jr., D.R. (eds.) Cardiovascular medicine, 3rd edn, pp. 593–610. Springer, London (2007)
Chee, J., Seow, S.C.: The electrocardiogram. In: Acharya, U.R., Suri, J.S., Spaan, J.A.E., Krishnan, S.M. (eds.) Advances in Cardiac Signal Processing, pp. 1–53. Springer, Heidelberg (2007)
Deedwania, P.C., Carbajal, E.V.: Congestive heart failure. In: Shanahan, J., Lebowitz, H. (eds.) Current diagnosis & treatment, Cardiology, pp. 203–232. McGraw-Hill Companies, USA (2009)
Eckmann, J.P., Kamphorst, S.O., Ruelle, D.: Recurrence plots of dynamical systems. Europhys. Lett. 5, 973–977 (1987)
Farmer, J.D.: Information dimension and the probabilistic structure of chaos. Naturforsch. Z. 37, 1304–1325 (1982)
Goldberger, A.L., Amaral, L.A.N., Glass, L., Hausdorff, J.M., Ivanov, PCh., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C.-K., Stanley, H.E.: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000)
Guyton, A.C., Hall, J.E.: Text Book of Medical Physiology, 11th edn. Elsevier, New York (2006)
Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques. Morgan Kaufmann, San Francisco (2005)
Jayachandran, E.S., Joseph, K.P., Acharya, U.R.: Analysis of myocardial infarction using discrete wavelet transform. J. Med. Syst. 34, 985–992 (2010)
Kamath, C.: A new approach to detect congestive heart failure using detrended fluctuation analysis of electrocardiogram signals. J. Eng. Sci. Technol. 10(2), 145–159 (2015)
Kaveh, A., Chung, W.: Automated classification of coronary atherosclerosis using single lead ECG. In: IEEE Conference on Wireless Sensors, Kuching, Sarawak (2013)
Kosko, B.: Fuzzy entropy and conditioning. Inf. Sci. 40, 165–174 (1986)
Lewenstein, K.: Radial basis function neural network approach for the diagnosis of coronary artery disease based on the standard electrocardiogram exercise test. Med. Biol. Eng. Comput. 39, 1–6 (2001)
Liu, B., Liu, J., Wang, G., Huang, K., Li, F., Zheng, Y., Luo, Y., Zhou, F.: A novel electrocardiogram parameterization algorithm and its application in myocardial infarction detection. Comput. Biol. Med. 61, 178–184 (2015)
Mandelbrot, B.B.: The Fractal Geometry of Nature. W.H. Freeman and Company (1982)
Masetic, Z., Subasi, A.: Detection of congestive heart failures using C4.5 decision tree. Southeast Eur. J. Soft Comput. 2, 74–77 (2013). ISSN 2233-1859
Masetic, Z., Subasi, A.: Congestive heart failure detection using random forest classifier. Comput. Methods Programs Biomed. 130, 54–64 (2016)
Masiti, M., Masiti, Y., Oppenheim, G., Poggi, J.M.: Wavelet toolbox for use with Matlab, User’s Guide, Ver. 3. The MathWorks, Inc. (2004)
Marcano-Cedeno, A., Quintanilla-Dominguez, J., Cortina-Januchs, M.G., Andina, D.: Feature selection using sequential forward selection and classification applying artificial metaplasticity neural network. In: IEEE, IECON 2010, 36th Annual Conference on IEEE Industrial Electronics Society (2010)
Marko, R.S., Igor, K.: Theoretical and Empirical Analysis of ReliefF and RReliefF. Mach. Learn. J. 53, 23–69 (2003). doi:10.1023/A:1025667309714
Martis, R.J., Acharya, U.R., Lim, C.M.: ECG beat classification using PCA, LDA, ICA and discrete wavelet transform. Biomed. Sig. Process. Control 8(5), 437–448 (2013a)
Mendis, S., et al.: Global Status Report on Non-communicable Diseases 2014. World Health Organization (2014)
Mookiah, M.R.K., Acharya, U.R., Lim, C.M., Petznick, A., Suri, J.S.: Data mining technique for automated diagnosis of glaucoma using higher order spectra and wavelet energy features. Knowl. Based Syst. 33, 73–82 (2012)
NIkias, C.I., Raghuveer, M.R.: Bispectrum estimation: a digital signal processing framework. Proc. IEEE 75, 869–891 (1987)
Pan, J., Tompkins, W.J.: A Real Time QRS Detection Algorithm, 11th edn. WB Saunders Co, Philadelphia (2006)
Pincus, S.M.: Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. 88, 2297–2301 (1991)
Renyi, A.: On measures of entropy and information. In: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, pp. 547–561 (1961)
Richman, J.S., Mooran, J.R.: Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 278, 2039–2049 (2000)
Rosso, O.A., Blanco, S., Yordanova, J., Kolev, V., Figliola, A., Schurmann, M., Basar, E.: Wavelet entropy: a new tool for analysis of short duration electrical signals. J. Neurosci. Methods 105, 65–67 (2001)
Safdarian, N., Dabanloo, N.J., Attarodi, G.: A new pattern recognition method for detection and localization of myocardial infarction using T-wave integral and total integral as extracted features from one cycle of ECG signal. J. Biomed. Sci. Eng. 7, 818–824 (2014)
Sharma, L.N., Tripathy, R.K., Dandapat, S.: Multiscale energy and eigenspace approach to detection and localization of myocardial infarction. IEEE Trans. Biomed. Eng. 62(7), 1827–1837 (2015)
Sun, L., Lu, Y., Yang, K., Li, S.: ECG analysis using multiple instance learning for myocardial infarction detection. IEEE Trans. Biomed. Eng. 59(12), 3348–3356 (2012)
Thuraisingham, R.A.: A classification to detect congestive heart failure using second-order difference plot of RR intervals. SAGE-Hindawi access to research Cardiology Research and Practice, article id 807379 (2009)
Townsend, N., Wickramasinghe, K., Bhatnagar, P., Smolina, K., Nichols, M., Leal, J., Luengo-Fernandez, R., Rayner, M.: Coronary Heart Disease Statistics, a Compendium of Health Statistics, 2012th edn. British Heart Foundation, London (2012)
Willerson, J.T., Hillis, L.D., Buja, L.M.: Ischemic Heart Disease Clinical and Pathophysiological Aspects. Raven, New York (1982)
World Health Organization (WHO). Disease and injury country estimates, Geneva, Switzerland (2009)
Acknowledgment
First author appreciates the support given by Japan Society for Promotion of Science (JSPS) KAKENHI Grant Number: 15K00439.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Fujita, H. et al. (2017). Characterization of Cardiovascular Diseases Using Wavelet Packet Decomposition and Nonlinear Measures of Electrocardiogram Signal. In: Benferhat, S., Tabia, K., Ali, M. (eds) Advances in Artificial Intelligence: From Theory to Practice. IEA/AIE 2017. Lecture Notes in Computer Science(), vol 10350. Springer, Cham. https://doi.org/10.1007/978-3-319-60042-0_30
Download citation
DOI: https://doi.org/10.1007/978-3-319-60042-0_30
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-60041-3
Online ISBN: 978-3-319-60042-0
eBook Packages: Computer ScienceComputer Science (R0)