Abstract
Decompositions of graphs play a central role in the field of parameterized complexity and are the basis for many fixed-parameter tractable algorithms for problems that are NP-hard in general. Tree decompositions are the most prominent concept in this context and several tools for computing tree decompositions recently competed in the 1st Parameterized Algorithms and Computational Experiments Challenge. However, in practice the quality of a tree decomposition cannot be judged without taking concrete algorithms that make use of tree decompositions into account. In fact, practical experience has shown that generating decompositions of small width is not the only crucial ingredient towards efficiency. To this end, we present htd, a free and open-source software library, which includes efficient implementations of several heuristic approaches for tree decomposition and offers various features for normalization and customization of decompositions. The aim of this article is to present the specifics of htd together with an experimental evaluation underlining the effectiveness and efficiency of the implementation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
See https://pacechallenge.wordpress.com/track-a-treewidth/ for more details.
- 2.
Available at http://www.hlt.utdallas.edu/~vgogate/quickbb.html.
- 3.
- 4.
Available at https://github.com/maxbannach/Jdrasil.
- 5.
- 6.
Available at http://www.qbflib.org/TS2016/Dataset_1.tar.gz.
- 7.
Available at https://github.com/holgerdell/PACE-treewidth-testbed.
- 8.
- 9.
Available at http://www.qbflib.org/TS2010/2QBF.tar.gz.
- 10.
When we use a pool of ten decompositions to choose from, the chance for obtaining an even better decomposition increases. However, no additional instance is solved when we change from five to ten iterations, but the run-time for the solved instances further decreases (compensating the time required for computing more decompositions).
References
Abseher, M.: htd 1.0.0-beta1 (2016). http://github.com/mabseher/htd/tree/v1.0.0-beta1
Abseher, M., Bliem, B., Charwat, G., Dusberger, F., Hecher, M., Woltran, S.: The D-FLAT system for dynamic programming on tree decompositions. In: Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS, vol. 8761, pp. 558–572. Springer, Cham (2014). doi:10.1007/978-3-319-11558-0_39
Abseher, M., Bliem, B., Charwat, G., Dusberger, F., Hecher, M., Woltran, S.: D-FLAT: progress report. Technical report, DBAI-TR-2014-86, TU Wien (2014). http://www.dbai.tuwien.ac.at/research/report/dbai-tr-2014-86.pdf
Abseher, M., Dusberger, F., Musliu, N., Woltran, S.: Improving the efficiency of dynamic programming on tree decompositions via machine learning. In: Proceedings of IJCAI, pp. 275–282. AAAI Press (2015)
Abseher, M., Musliu, N., Woltran, S.: htd - A free, open-source framework for tree decompositions and beyond. Technical report, DBAI-TR-2016-96, TU Wien (2016). http://www.dbai.tuwien.ac.at/research/report/dbai-tr-2016-96.pdf
Abseher, M., Musliu, N., Woltran, S.: Improving the efficiency of dynamic programming on tree decompositions via machine learning. Technical report, DBAI-TR-2016-94, TU Wien (2016). http://www.dbai.tuwien.ac.at/research/report/dbai-tr-2016-94.pdf
Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings in a \(k\)-tree. J. Algebraic Discrete Methods 8(2), 277–284 (1987)
Arnborg, S., Proskurowski, A.: Linear time algorithms for NP-hard problems restricted to partial \(k\)-trees. Discrete Appl. Math. 23(1), 11–24 (1989)
Bachoore, E.H., Bodlaender, H.L.: A branch and bound algorithm for exact, upper, and lower bounds on treewidth. In: Cheng, S.-W., Poon, C.K. (eds.) AAIM 2006. LNCS, vol. 4041, pp. 255–266. Springer, Heidelberg (2006). doi:10.1007/11775096_24
Berry, A., Heggernes, P., Simonet, G.: The minimum degree heuristic and the minimal triangulation process. In: Bodlaender, H.L. (ed.) WG 2003. LNCS, vol. 2880, pp. 58–70. Springer, Heidelberg (2003). doi:10.1007/978-3-540-39890-5_6
Bertelè, U., Brioschi, F.: On non-serial dynamic programming. J. Comb. Theor. Ser. A 14(2), 137–148 (1973)
Bodlaender, H.L., Koster, A.M.C.A.: Combinatorial optimization on graphs of bounded treewidth. Comput. J. 51(3), 255–269 (2008)
Bodlaender, H.L., Koster, A.M.C.A.: Treewidth computations I. Upper bounds. Inf. Comput. 208(3), 259–275 (2010)
Charwat, G., Woltran, S.: Dynamic programming-based QBF solving. In: Proceedings of the 4th International Workshop on Quantified Boolean Formulas, vol. 1719, pp. 27–40. CEUR Workshop Proceedings (2016)
Clautiaux, F., Moukrim, A., Négre, S., Carlier, J.: Heuristic and meta-heuristic methods for computing graph treewidth. RAIRO Oper. Res. 38, 13–26 (2004)
Dechter, R.: Constraint Processing. Morgan Kaufmann, USA (2003)
Dourisboure, Y.: Compact routing schemes for generalised chordal graphs. J. Graph Algorithms Appl. 9(2), 277–297 (2005)
Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Science. Springer, New York (1999)
Ganzow, T., Gottlob, G., Musliu, N., Samer, M.: A CSP hypergraph library. Technical report, DBAI-TR-2005-50, TU Wien (2005). http://www.dbai.tuwien.ac.at/proj/hypertree/csphgl.pdf
Gaspers, S., Gudmundsson, J., Jones, M., Mestre, J., Rümmele, S.: Turbocharging treewidth heuristics. In: Proceedings of IPEC (2016, to appear)
Gogate, V., Dechter, R.: A complete anytime algorithm for treewidth. In: Proceedings of UAI, pp. 201–208. AUAI Press (2004)
Gottlob, G., Leone, N., Scarcello, F.: Hypertree decompositions and tractable queries. J. Comput. Syst. Sci. 64(3), 579–627 (2002)
Halin, R.: S-functions for graphs. J. Geom. 8, 171–186 (1976)
Hamann, M., Strasser, B.: Graph bisection with pareto-optimization. In: Proceedings of ALENEX, pp. 90–102. SIAM (2016)
Hammerl, T., Musliu, N.: Ant colony optimization for tree decompositions. In: Cowling, P., Merz, P. (eds.) EvoCOP 2010. LNCS, vol. 6022, pp. 95–106. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12139-5_9
Hammerl, T., Musliu, N., Schafhauser, W.: Metaheuristic algorithms and tree decomposition. In: Kacprzyk, J., Pedrycz, W. (eds.) Springer Handbook of Computational Intelligence, pp. 1255–1270. Springer, Heidelberg (2015). doi:10.1007/978-3-662-43505-2_64
Jégou, P., Terrioux, C.: Bag-connected tree-width: a new parameter for graph decomposition. In: Proceedings of ISAIM, pp. 12–28 (2014)
Kjaerulff, U.: Optimal decomposition of probabilistic networks by simulated annealing. Stat. Comput. 2(1), 2–17 (1992)
Kloks, T.: Treewidth, Computations and Approximations. LNCS, vol. 842. Springer, Heidelberg (1994)
Koster, A.M.C.A., van Hoesel, S.P.M., Kolen, A.W.J.: Solving frequency assignment problems via tree-decomposition 1. Electr. Notes Discrete Math. 3, 102–105 (1999)
Larranaga, P., Kujipers, C.M., Poza, M., Murga, R.H.: Decomposing bayesian networks: triangulation of the moral graph with genetic algorithms. Stat. Comput. 7(1), 19–34 (1997)
Lauritzen, S.L., Spiegelhalter, D.J.: Local computations with probabilities on graphical structures and their application to expert systems. J. R. Stat. Soc. Ser. B 50, 157–224 (1988)
Morak, M., Musliu, N., Pichler, R., Rümmele, S., Woltran, S.: Evaluating tree-decomposition based algorithms for answer set programming. In: Hamadi, Y., Schoenauer, M. (eds.) LION 2012. LNCS, pp. 130–144. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34413-8_10
Musliu, N.: An iterative heuristic algorithm for tree decomposition. In: Cotta, C., van Hemert, J. (eds.) Recent Advances in Evolutionary Computation for Combinatorial Optimization. Studies in Computational Intelligence, vol. 153, pp. 133–150. Springer, Heidelberg (2008)
Musliu, N., Schafhauser, W.: Genetic algorithms for generalized hypertree decompositions. Eur. J. Ind. Eng. 1(3), 317–340 (2007)
Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathematics and Its Applications. Oxford University Press, Oxford (2006)
Robertson, N., Seymour, P.: Graph minors. III. Planar tree-width. J. Comb. Theor. Ser. B 36(1), 49–64 (1984)
Robertson, N., Seymour, P.: Graph minors. X. Obstructions to tree-decomposition. J. Comb. Theor. Ser. B 52(2), 153–190 (1991)
Shoikhet, K., Geiger, D.: A practical algorithm for finding optimal triangulations. In: Proceedings of AAAI/IAAI, pp. 185–190. AAAI Press/The MIT Press (1997)
Tarjan, R.E., Yannakakis, M.: Simple linear-time algorithm to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM J. Comput. 13, 566–579 (1984)
van Wersch, R., Kelk, S.: Toto: an open database for computation, storage and retrieval of tree decompositions. Discrete Appl. Math. 217, 389–393 (2017)
Xu, J., Jiao, F., Berger, B.: A tree-decomposition approach to protein structure prediction. In: Proceedings of CSB, pp. 247–256 (2005)
Acknowledgments
This work has been supported by the Austrian Science Fund (FWF): P25607-N23, P24814-N23, Y698-N23.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Abseher, M., Musliu, N., Woltran, S. (2017). htd – A Free, Open-Source Framework for (Customized) Tree Decompositions and Beyond. In: Salvagnin, D., Lombardi, M. (eds) Integration of AI and OR Techniques in Constraint Programming. CPAIOR 2017. Lecture Notes in Computer Science(), vol 10335. Springer, Cham. https://doi.org/10.1007/978-3-319-59776-8_30
Download citation
DOI: https://doi.org/10.1007/978-3-319-59776-8_30
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-59775-1
Online ISBN: 978-3-319-59776-8
eBook Packages: Computer ScienceComputer Science (R0)