iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-319-59776-8_30
htd – A Free, Open-Source Framework for (Customized) Tree Decompositions and Beyond | SpringerLink
Skip to main content

htd – A Free, Open-Source Framework for (Customized) Tree Decompositions and Beyond

  • Conference paper
  • First Online:
Integration of AI and OR Techniques in Constraint Programming (CPAIOR 2017)

Abstract

Decompositions of graphs play a central role in the field of parameterized complexity and are the basis for many fixed-parameter tractable algorithms for problems that are NP-hard in general. Tree decompositions are the most prominent concept in this context and several tools for computing tree decompositions recently competed in the 1st Parameterized Algorithms and Computational Experiments Challenge. However, in practice the quality of a tree decomposition cannot be judged without taking concrete algorithms that make use of tree decompositions into account. In fact, practical experience has shown that generating decompositions of small width is not the only crucial ingredient towards efficiency. To this end, we present htd, a free and open-source software library, which includes efficient implementations of several heuristic approaches for tree decomposition and offers various features for normalization and customization of decompositions. The aim of this article is to present the specifics of htd together with an experimental evaluation underlining the effectiveness and efficiency of the implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    See https://pacechallenge.wordpress.com/track-a-treewidth/ for more details.

  2. 2.

    Available at http://www.hlt.utdallas.edu/~vgogate/quickbb.html.

  3. 3.

    Available at http://www.dbai.tuwien.ac.at/proj/hypertree/downloads.html.

  4. 4.

    Available at https://github.com/maxbannach/Jdrasil.

  5. 5.

    See https://pacechallenge.wordpress.com/2016/09/12/here-are-the-results-of-the-1st-pace-challenge/.

  6. 6.

    Available at http://www.qbflib.org/TS2016/Dataset_1.tar.gz.

  7. 7.

    Available at https://github.com/holgerdell/PACE-treewidth-testbed.

  8. 8.

    Available at https://github.com/gcharwat/dynqbf/releases/tag/v0.3-beta.

  9. 9.

    Available at http://www.qbflib.org/TS2010/2QBF.tar.gz.

  10. 10.

    When we use a pool of ten decompositions to choose from, the chance for obtaining an even better decomposition increases. However, no additional instance is solved when we change from five to ten iterations, but the run-time for the solved instances further decreases (compensating the time required for computing more decompositions).

References

  1. Abseher, M.: htd 1.0.0-beta1 (2016). http://github.com/mabseher/htd/tree/v1.0.0-beta1

  2. Abseher, M., Bliem, B., Charwat, G., Dusberger, F., Hecher, M., Woltran, S.: The D-FLAT system for dynamic programming on tree decompositions. In: Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS, vol. 8761, pp. 558–572. Springer, Cham (2014). doi:10.1007/978-3-319-11558-0_39

    Google Scholar 

  3. Abseher, M., Bliem, B., Charwat, G., Dusberger, F., Hecher, M., Woltran, S.: D-FLAT: progress report. Technical report, DBAI-TR-2014-86, TU Wien (2014). http://www.dbai.tuwien.ac.at/research/report/dbai-tr-2014-86.pdf

  4. Abseher, M., Dusberger, F., Musliu, N., Woltran, S.: Improving the efficiency of dynamic programming on tree decompositions via machine learning. In: Proceedings of IJCAI, pp. 275–282. AAAI Press (2015)

    Google Scholar 

  5. Abseher, M., Musliu, N., Woltran, S.: htd - A free, open-source framework for tree decompositions and beyond. Technical report, DBAI-TR-2016-96, TU Wien (2016). http://www.dbai.tuwien.ac.at/research/report/dbai-tr-2016-96.pdf

  6. Abseher, M., Musliu, N., Woltran, S.: Improving the efficiency of dynamic programming on tree decompositions via machine learning. Technical report, DBAI-TR-2016-94, TU Wien (2016). http://www.dbai.tuwien.ac.at/research/report/dbai-tr-2016-94.pdf

  7. Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings in a \(k\)-tree. J. Algebraic Discrete Methods 8(2), 277–284 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  8. Arnborg, S., Proskurowski, A.: Linear time algorithms for NP-hard problems restricted to partial \(k\)-trees. Discrete Appl. Math. 23(1), 11–24 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bachoore, E.H., Bodlaender, H.L.: A branch and bound algorithm for exact, upper, and lower bounds on treewidth. In: Cheng, S.-W., Poon, C.K. (eds.) AAIM 2006. LNCS, vol. 4041, pp. 255–266. Springer, Heidelberg (2006). doi:10.1007/11775096_24

    Chapter  Google Scholar 

  10. Berry, A., Heggernes, P., Simonet, G.: The minimum degree heuristic and the minimal triangulation process. In: Bodlaender, H.L. (ed.) WG 2003. LNCS, vol. 2880, pp. 58–70. Springer, Heidelberg (2003). doi:10.1007/978-3-540-39890-5_6

    Chapter  Google Scholar 

  11. Bertelè, U., Brioschi, F.: On non-serial dynamic programming. J. Comb. Theor. Ser. A 14(2), 137–148 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bodlaender, H.L., Koster, A.M.C.A.: Combinatorial optimization on graphs of bounded treewidth. Comput. J. 51(3), 255–269 (2008)

    Article  Google Scholar 

  13. Bodlaender, H.L., Koster, A.M.C.A.: Treewidth computations I. Upper bounds. Inf. Comput. 208(3), 259–275 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Charwat, G., Woltran, S.: Dynamic programming-based QBF solving. In: Proceedings of the 4th International Workshop on Quantified Boolean Formulas, vol. 1719, pp. 27–40. CEUR Workshop Proceedings (2016)

    Google Scholar 

  15. Clautiaux, F., Moukrim, A., Négre, S., Carlier, J.: Heuristic and meta-heuristic methods for computing graph treewidth. RAIRO Oper. Res. 38, 13–26 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dechter, R.: Constraint Processing. Morgan Kaufmann, USA (2003)

    MATH  Google Scholar 

  17. Dourisboure, Y.: Compact routing schemes for generalised chordal graphs. J. Graph Algorithms Appl. 9(2), 277–297 (2005)

    Article  MathSciNet  Google Scholar 

  18. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Science. Springer, New York (1999)

    Book  MATH  Google Scholar 

  19. Ganzow, T., Gottlob, G., Musliu, N., Samer, M.: A CSP hypergraph library. Technical report, DBAI-TR-2005-50, TU Wien (2005). http://www.dbai.tuwien.ac.at/proj/hypertree/csphgl.pdf

  20. Gaspers, S., Gudmundsson, J., Jones, M., Mestre, J., Rümmele, S.: Turbocharging treewidth heuristics. In: Proceedings of IPEC (2016, to appear)

    Google Scholar 

  21. Gogate, V., Dechter, R.: A complete anytime algorithm for treewidth. In: Proceedings of UAI, pp. 201–208. AUAI Press (2004)

    Google Scholar 

  22. Gottlob, G., Leone, N., Scarcello, F.: Hypertree decompositions and tractable queries. J. Comput. Syst. Sci. 64(3), 579–627 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Halin, R.: S-functions for graphs. J. Geom. 8, 171–186 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hamann, M., Strasser, B.: Graph bisection with pareto-optimization. In: Proceedings of ALENEX, pp. 90–102. SIAM (2016)

    Google Scholar 

  25. Hammerl, T., Musliu, N.: Ant colony optimization for tree decompositions. In: Cowling, P., Merz, P. (eds.) EvoCOP 2010. LNCS, vol. 6022, pp. 95–106. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12139-5_9

    Chapter  Google Scholar 

  26. Hammerl, T., Musliu, N., Schafhauser, W.: Metaheuristic algorithms and tree decomposition. In: Kacprzyk, J., Pedrycz, W. (eds.) Springer Handbook of Computational Intelligence, pp. 1255–1270. Springer, Heidelberg (2015). doi:10.1007/978-3-662-43505-2_64

    Chapter  Google Scholar 

  27. Jégou, P., Terrioux, C.: Bag-connected tree-width: a new parameter for graph decomposition. In: Proceedings of ISAIM, pp. 12–28 (2014)

    Google Scholar 

  28. Kjaerulff, U.: Optimal decomposition of probabilistic networks by simulated annealing. Stat. Comput. 2(1), 2–17 (1992)

    Article  Google Scholar 

  29. Kloks, T.: Treewidth, Computations and Approximations. LNCS, vol. 842. Springer, Heidelberg (1994)

    MATH  Google Scholar 

  30. Koster, A.M.C.A., van Hoesel, S.P.M., Kolen, A.W.J.: Solving frequency assignment problems via tree-decomposition 1. Electr. Notes Discrete Math. 3, 102–105 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  31. Larranaga, P., Kujipers, C.M., Poza, M., Murga, R.H.: Decomposing bayesian networks: triangulation of the moral graph with genetic algorithms. Stat. Comput. 7(1), 19–34 (1997)

    Article  Google Scholar 

  32. Lauritzen, S.L., Spiegelhalter, D.J.: Local computations with probabilities on graphical structures and their application to expert systems. J. R. Stat. Soc. Ser. B 50, 157–224 (1988)

    MathSciNet  MATH  Google Scholar 

  33. Morak, M., Musliu, N., Pichler, R., Rümmele, S., Woltran, S.: Evaluating tree-decomposition based algorithms for answer set programming. In: Hamadi, Y., Schoenauer, M. (eds.) LION 2012. LNCS, pp. 130–144. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34413-8_10

    Chapter  Google Scholar 

  34. Musliu, N.: An iterative heuristic algorithm for tree decomposition. In: Cotta, C., van Hemert, J. (eds.) Recent Advances in Evolutionary Computation for Combinatorial Optimization. Studies in Computational Intelligence, vol. 153, pp. 133–150. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  35. Musliu, N., Schafhauser, W.: Genetic algorithms for generalized hypertree decompositions. Eur. J. Ind. Eng. 1(3), 317–340 (2007)

    Article  Google Scholar 

  36. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathematics and Its Applications. Oxford University Press, Oxford (2006)

    Book  MATH  Google Scholar 

  37. Robertson, N., Seymour, P.: Graph minors. III. Planar tree-width. J. Comb. Theor. Ser. B 36(1), 49–64 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  38. Robertson, N., Seymour, P.: Graph minors. X. Obstructions to tree-decomposition. J. Comb. Theor. Ser. B 52(2), 153–190 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  39. Shoikhet, K., Geiger, D.: A practical algorithm for finding optimal triangulations. In: Proceedings of AAAI/IAAI, pp. 185–190. AAAI Press/The MIT Press (1997)

    Google Scholar 

  40. Tarjan, R.E., Yannakakis, M.: Simple linear-time algorithm to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM J. Comput. 13, 566–579 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  41. van Wersch, R., Kelk, S.: Toto: an open database for computation, storage and retrieval of tree decompositions. Discrete Appl. Math. 217, 389–393 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  42. Xu, J., Jiao, F., Berger, B.: A tree-decomposition approach to protein structure prediction. In: Proceedings of CSB, pp. 247–256 (2005)

    Google Scholar 

Download references

Acknowledgments

This work has been supported by the Austrian Science Fund (FWF): P25607-N23, P24814-N23, Y698-N23.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Abseher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Abseher, M., Musliu, N., Woltran, S. (2017). htd – A Free, Open-Source Framework for (Customized) Tree Decompositions and Beyond. In: Salvagnin, D., Lombardi, M. (eds) Integration of AI and OR Techniques in Constraint Programming. CPAIOR 2017. Lecture Notes in Computer Science(), vol 10335. Springer, Cham. https://doi.org/10.1007/978-3-319-59776-8_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59776-8_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59775-1

  • Online ISBN: 978-3-319-59776-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics