iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-319-59575-7_3
Relating Diseases Based on Disease Module Theory | SpringerLink
Skip to main content

Relating Diseases Based on Disease Module Theory

  • Conference paper
  • First Online:
Bioinformatics Research and Applications (ISBRA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 10330))

Included in the following conference series:

Abstract

Understanding disease-disease associations can not only help us gain deeper insights into complex diseases, but also lead to improvements in disease diagnosis, drug repositioning and new drug development. Due to the growing body of high-throughput biological data, a number of methods have been proposed for the computation of similarity among diseases during past decades. Recently, the disease module theory has been presented, which states that disease-related genes or proteins tend to interact with each other in the same neighborhood of protein-protein interaction network. In this study, we propose a new method called ModuleSim to measure associations between diseases by using disease-gene association data and protein-protein interaction network data based on disease module theory. By considering the interactions between disease modules and each module’s modularity, ModuleSim outperforms other four popular methods for predicting disease-disease similarity.

This work is supported by the National Science Fund for Excellent Young Scholars under Grant No. 61622213, the National Natural Science Foundation of China under grant No. 61370024 and No. 61472133, and the Program of Independent Exploration Innovation in Central South University (2016zzts354).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vanunu, O., Magger, O., Ruppin, E., et al.: Associating genes and protein complexes with disease via network propagation. PLoS Comput. Biol. 6(1), e1000641 (2010)

    Article  MathSciNet  Google Scholar 

  2. Li, M., Zheng, R., Li, Q., et al.: Prioritizing disease genes by using search engine algorithm. Curr. Bioinform. 11(2), 195–202 (2016)

    Article  Google Scholar 

  3. Luo, H., Wang, J., Li, M., et al.: Drug repositioning based on comprehensive similarity measures and Bi-Random walk algorithm. Bioinformatics 32(17), 2664–2671 (2016)

    Article  Google Scholar 

  4. van Driel, M.A., Bruggeman, J., Vriend, G., et al.: A text-mining analysis of the huamn phenome. Eur. J. Hum. Genet. 14(5), 535–542 (2006)

    Article  Google Scholar 

  5. Goh, K.I., Cusick, M.E., Valle, D., et al.: The human disease network. Proc. Natl. Acad. Sci. 104(21), 8685–8690 (2007)

    Article  Google Scholar 

  6. Jung, J., Lee, D.: Inferring disease association using clinical factors in a combinatorial manner and their use in drug repositioning. Bioinformatics 29(16), 2017–2023 (2013)

    Article  Google Scholar 

  7. Sun, K., Buchan, N., Larminie, C., et al.: The integrated disease network. Integr. Biol. 6(11), 1069–1079 (2014)

    Article  Google Scholar 

  8. Frick, J.M., Guha, R., Peryea, T., et al.: Evaluating disease similarity using latent Dirichlet allocation. bioRxiv: 030593 (2015)

  9. Cheng, L., Li, J., Ju, P., et al.: SemFunSim: a new method for measuring disease similarity by integrating semantic and gene functional association. PLoS One 9(6), e99415 (2014)

    Article  MathSciNet  Google Scholar 

  10. Schriml, L.M., et al.: Disease ontology: a backbone for disease semantic integration. Nucleic Acids Res. 40(D1), D940–D946 (2012)

    Article  Google Scholar 

  11. Lipscomb, C.E.: Medical subject headings (MeSH). Bull. Med. Libr. Assoc. 88(3), 265 (2000)

    Google Scholar 

  12. Yu, G., Wang, L.G., Yan, G.R., et al.: DOSE: an R/Bioconductor package for disease ontology semantic and enrichment analysis. Bioinformatics 31(4), 608–609 (2015)

    Article  Google Scholar 

  13. Wang, D., Wang, J., Lu, M., et al.: Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases. Bioinformatics 26(13), 1644–1650 (2010)

    Article  Google Scholar 

  14. Zhang, X., Zhang, R., Jiang, Y., et al.: The expanded human disease network combining protein–protein interaction information. Eur. J. Hum. Genet. 19(7), 783–788 (2011)

    Article  Google Scholar 

  15. Mathur, S., Dinakarpandian, D.: Automated ontological gene annotation for computing disease similarity. AMIA Summits Transl. Sci. Proc. 2010, 12–16 (2010)

    Google Scholar 

  16. Mathur, S., Dinakarpandian, D.: Finding disease similarity based on implicit semantic similarity. J. Biomed. Inform. 45(2), 363–371 (2012)

    Article  Google Scholar 

  17. Ashburner, M., Ball, C.A., Blake, J.A., et al.: Gene ontology: tool for the unification of biology. Nat. Genet. 25(1), 25–29 (2000)

    Article  Google Scholar 

  18. Sun, K., Gonçalves, J.P., Larminie, C., et al.: Predicting disease associations via biological network analysis. BMC Bioinform. 15(1), 1 (2014)

    Article  Google Scholar 

  19. Milenkoviæ, T., Pržulj, N.: Uncovering biological network function via graphlet degree signatures. Cancer Inform. 6, 257 (2008)

    Google Scholar 

  20. Hamaneh, M.B., Yu, Y.K.: Relating diseases by integrating gene associations and information flow through protein interaction network. PLoS ONE 9(10), e110936 (2014)

    Article  Google Scholar 

  21. Li, P., Nie, Y., Yu, J.: Fusing literature and full network data improves disease similarity computation. BMC Bioinform. 17(1), 326 (2016)

    Article  Google Scholar 

  22. Köhler, S., Bauer, S., Horn, D., et al.: Walking the interactome for prioritization of candidate disease genes. Am. J. Hum. Genet. 82(4), 949–958 (2008)

    Article  Google Scholar 

  23. Menche, J., Sharma, A., Kitsak, M., et al.: Uncovering disease-disease relationships through the incomplete interactome. Science 347(6224), 1257601 (2015)

    Article  Google Scholar 

  24. Piñero, J., Queralt-Rosinach, N., Bravo, À., et al.: DisGeNET: a discovery platform for the dynamical exploration of human diseases and their genes. Database 2015, bav028 (2015)

    Google Scholar 

  25. Cheng, L., Wang, G., Li, J., et al.: SIDD: a semantically integrated database towards a global view of human disease. PLoS ONE 8(10), e75504 (2013)

    Article  Google Scholar 

  26. Chatr-Aryamontri, A., Breitkreutz, B.J., Heinicke, S., et al.: The BioGRID interaction database: 2013 update. Nucleic Acids Res. 41(D1), D816–D823 (2013)

    Article  Google Scholar 

  27. Prasad, T.S.K., Goel, R., Kandasamy, K., et al.: Human protein reference database—2009 update. Nucleic Acids Res. 37(suppl 1), D767–D772 (2009)

    Article  Google Scholar 

  28. Orchard, S., Ammari, M., Aranda, B., et al.: The MIntAct project—IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res. 42(D1), D358–D363 (2013)

    Article  Google Scholar 

  29. Persico, M., Ceol, A., Gavrila, C., et al.: HomoMINT: an inferred human network based on orthology mapping of protein interactions discovered in model organisms. BMC Bioinform. 6(4), 1 (2005)

    Google Scholar 

  30. Suthram, S., Dudley, J.T., Chiang, A.P., et al.: Network-based elucidation of human disease similarities reveals common functional modules enriched for pluripotent drug targets. PLoS Comput. Biol. 6(2), e1000662 (2010)

    Article  Google Scholar 

  31. Pakhomov, S., McInnes, B., Adam, T., et al.: Semantic similarity and relatedness between clinical terms: an experimental study. In: AMIA annual symposium proceedings. American Medical Informatics Association, p. 572 (2010)

    Google Scholar 

  32. Lee, I., Blom, U.M., Wang, P.I., et al.: Prioritizing candidate disease genes by network-based boosting of genome-wide association data. Genome Res. 21(7), 1109–1121 (2011)

    Article  Google Scholar 

  33. Ni, J., Koyuturk, M., Tong, H., et al.: Disease gene prioritization by integrating tissue-specific molecular networks using a robust multi-network model. BMC Bioinform. 17(1), 453 (2016)

    Article  Google Scholar 

  34. Mitchell, J.A., Aronson, A.R., Mork, J.G., et al.: Gene indexing: characterization and analysis of NLM’s GeneRIFs. In: AMIA (2003)

    Google Scholar 

  35. Amberger, J.S., Bocchini, C.A., Schiettecatte, F., et al.: OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res. 43(D1), D789–D798 (2015)

    Article  Google Scholar 

  36. Davis, A.P., Murphy, C.G., Johnson, R., et al.: The comparative toxicogenomics database: update 2013. Nucleic Acids Res. 41(D1), D1104–D1114 (2012)

    Article  Google Scholar 

  37. Becker, K.G., Barnes, K.C., Bright, T.J., et al.: The genetic association database. Nat. Genet. 36(5), 431–432 (2004)

    Article  Google Scholar 

  38. Wang, J., Zhang, J., Li, K., et al.: SpliceDisease database: linking RNA splicing and disease. Nucleic Acids Res. 40(D1), D1055–D1059 (2012)

    Article  Google Scholar 

  39. Bodenreider, O.: The unified medical language system (UMLS): integrating biomedical terminology. Nucleic Acids Res. 32(suppl 1), D267–D270 (2004)

    Article  Google Scholar 

  40. Barabási, A.L., Gulbahce, N., Loscalzo, J.: Network medicine: a network-based approach to human disease. Nat. Rev. Genet. 12(1), 56–68 (2011)

    Article  Google Scholar 

  41. Guo, X., Zhang, J., Cai, Z., et al.: Searching genome-wide multi-locus associations for multiple diseases based on Bayesian Inference. In: IEEE/ACM transactions on computational biology and bioinformatics (2016)

    Google Scholar 

  42. Teng, B., Yang, C., Liu, J., et al.: Exploring the genetic patterns of complex diseases via the integrative genome-wide approach. IEEE/ACM Trans. Comput. Biol. Bioinform. 13(3), 557–564 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Ni, P. et al. (2017). Relating Diseases Based on Disease Module Theory. In: Cai, Z., Daescu, O., Li, M. (eds) Bioinformatics Research and Applications. ISBRA 2017. Lecture Notes in Computer Science(), vol 10330. Springer, Cham. https://doi.org/10.1007/978-3-319-59575-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59575-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59574-0

  • Online ISBN: 978-3-319-59575-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics