iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-319-57351-9_29
Domain Adaptation for Detecting Mild Cognitive Impairment | SpringerLink
Skip to main content

Domain Adaptation for Detecting Mild Cognitive Impairment

  • Conference paper
  • First Online:
Advances in Artificial Intelligence (Canadian AI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10233))

Included in the following conference series:

Abstract

Lexical and acoustic markers in spoken language can be used to detect mild cognitive impairment (MCI), a condition which is often a precursor to dementia and frequently causes some degree of dysphasia. Research to develop such a diagnostic tool for clinicians has been hindered by the scarcity of available data. This work uses domain adaptation to adapt Alzheimer’s data to improve classification accuracy of MCI. We evaluate two simple domain adaptation algorithms, AUGMENT and CORAL, and show that AUGMENT improves upon all baselines. Additionally we investigate the use of previously unconsidered discourse features and show they are not useful in distinguishing MCI from healthy controls.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.alz.org/greaterdallas/documents/AlzOtherDementias.pdf.

  2. 2.

    We used ZCA whitening which is discussed in greater detail here: http://ufldl.stanford.edu/wiki/index.php/Whitening.

  3. 3.

    Available at: http://nlp.stanford.edu/software/tagger.shtml.

  4. 4.

    With one small modification: We ran a 7-fold cross validation instead of 10-fold because there was not enough target data in the 25% trial to divide into 10 folds.

References

  1. Petersen, R.C.: Mild cognitive impairment as a diagnostic entity. J. Intern. Med. 256(3), 183–194 (2004)

    Article  Google Scholar 

  2. Petersen, R.C.: Mild cognitive impairment. CONTINUUM: lifelong learning. Neurology 22(2, Dementia), 404–418 (2016)

    Google Scholar 

  3. Hsiung, G.Y.R., Donald, A., Grand, J., Black, S.E., Bouchard, R.W., Gauthier, S.G., Loy-English, I., Hogan, D.B., Kertesz, A., Rockwood, K., et al.: Outcomes of cognitively impaired not demented at 2 years in the Canadian cohort study of cognitive impairment and related dementias. Dement. Geriatr. Cogn. Disord. 22(5–6), 413–420 (2006)

    Article  Google Scholar 

  4. Faber-Langendoen, K., Morris, J.C., Knesevich, J.W., LaBarge, E., Miller, J.P., Berg, L.: Aphasia in senile dementia of the Alzheimer type. Ann. Neurol. 23(4), 365–370 (1988)

    Article  Google Scholar 

  5. McKeith, I.G., Galasko, D., Kosaka, K., Perry, E., Dickson, D.W., Hansen, L., Salmon, D., Lowe, J., Mirra, S., Byrne, E., et al.: Consensus guidelines for the clinical and pathologic diagnosis of dementia with lewy bodies (DLB) report of the consortium on DLB international workshop. Neurology 47(5), 1113–1124 (1996)

    Article  Google Scholar 

  6. Weiner, M.F., Neubecker, K.E., Bret, M.E., Hynan, L.S.: Language in Alzheimer’s disease. J. Clin. Psychiatry 69(8), 1223 (2008)

    Article  Google Scholar 

  7. Boise, L., Neal, M.B., Kaye, J.: Dementia assessment in primary care: results from a study in three managed care systems. J. Gerontol. Ser. A: Biol. Sci. Med. Sci. 59(6), M621–M626 (2004)

    Article  Google Scholar 

  8. Mitchell, A.J.: A meta-analysis then accuracy of the mini-mental state examination in the detection of dementia and mild cognitive impairment. J. Psychiatr. Res. 43(4), 411–431 (2009)

    Article  Google Scholar 

  9. Ahmed, S., Haigh, A.M.F., de Jager, C.A., Garrard, P.: Connected speech as a marker of disease progression in autopsy-proven Alzheimer’s disease. Brain 136(12), 3727–3737 (2013)

    Article  Google Scholar 

  10. Rentoumi, V., Raoufian, L., Ahmed, S., de Jager, C.A., Garrard, P.: Features and machine learning classification of connected speech samples from patients with autopsy proven Alzheimer’s disease with and without additional vascular pathology. J. Alzheimer’s Dis. 42(s3), S3–S17 (2014)

    Google Scholar 

  11. Fraser, K.C., Hirst, G., Graham, N.L., Meltzer, J.A., Black, S.E., Rochon, E.: Comparison of different feature sets for identification of variants in progressive aphasia. In: ACL 2014, 17 (2014)

    Google Scholar 

  12. Fraser, K.C., Meltzer, J.A., Rudzicz, F.: Linguistic features identify Alzheimer’s disease in narrative speech. J. Alzheimer’s Dis. 49(2), 407–422 (2015)

    Article  Google Scholar 

  13. Becker, J.T., Boiler, F., Lopez, O.L., Saxton, J., McGonigle, K.L.: The natural history of Alzeheimae’s disease: description of study cohort and accuracy of diagnosis. Arch. Neurol. 51(6), 585–594 (1994)

    Article  Google Scholar 

  14. Roark, B., Mitchell, M., Hosom, J.P., Hollingshead, K., Kaye, J.: Spoken language derived measures for detecting mild cognitive impairment. IEEE Trans. Audio Speech Lang. Process. 19(7), 2081–2090 (2011)

    Article  Google Scholar 

  15. Joty, S., Carenini, G., Ng, R.T.: CODRA: a novel discriminative framework for rhetorical analysis. Comput. Linguist. 41, 385–415 (2015)

    Article  MathSciNet  Google Scholar 

  16. Chapman, S.B., Ulatowska, H.K., King, K., Johnson, J.K., McIntire, D.D.: Discourse in early Alzheimer’s disease versus normal advanced aging. Am. J. Speech-Lang. Pathol. 4(4), 124–129 (1995)

    Article  Google Scholar 

  17. Blonder, L.X., Kort, E.D., Schmitt, F.A.: Conversational discourse in patients with Alzheimer’s disease. J. Linguist. Anthropol. 4(1), 50–71 (1994)

    Article  Google Scholar 

  18. Ellis, D.G.: Coherence patterns in Alzheimer’s discourse. Commun. Res. 23(4), 472–495 (1996)

    Article  Google Scholar 

  19. Dijkstra, K., Bourgeois, M.S., Allen, R.S., Burgio, L.D.: Conversational coherence: discourse analysis of older adults with and without dementia. J. Neurolinguist. 17(4), 263–283 (2004)

    Article  Google Scholar 

  20. Ellis, C., Henderson, A., Wright, H.H., Rogalski, Y.: Global coherence during discourse production in adults: a review of the literature. Int. J. Lang. Commun. Disord. 51, 359–367 (2016)

    Article  Google Scholar 

  21. Laine, M., Laakso, M., Vuorinen, E., Rinne, J.: Coherence and informativeness of discourse in two dementia types. J. Neurolinguist. 11(1), 79–87 (1998)

    Article  Google Scholar 

  22. Davis, B.H.: So, you had two sisters, right? Functions for discourse markers in Alzheimer’s talk. In: Davis, B.H. (ed.) Alzheimer Talk, Text and Context, pp. 128–145. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  23. Feng, V.W.: RST-style discourse parsing and its applications in discourse analysis. Ph.D. thesis, University of Toronto (2015)

    Google Scholar 

  24. Chelba, C., Acero, A.: Adaptation of maximum entropy capitalizer: little data can help a lot. Comput. Speech Lang. 20(4), 382–399 (2006)

    Article  Google Scholar 

  25. Blitzer, J., McDonald, R., Pereira, F.: Domain adaptation with structural correspondence learning. In: Proceedings of EMNLP 2006, Sydney, Australia, pp. 120–128, July 2006

    Google Scholar 

  26. Daume, H.: Frustratingly easy domain adaptation. In: Proceedings of ACL 2007 (2007)

    Google Scholar 

  27. Sun, B., Feng, J., Saenko, K.: Return of frustratingly easy domain adaptation. arXiv preprint (2015). arXiv:1511.05547

  28. Giles, E., Patterson, K., Hodges, J.R.: Performance on the Boston cookie theft picture description task in patients with early dementia of the Alzheimer’s type: missing information. Aphasiology 10(4), 395–408 (1996)

    Article  Google Scholar 

  29. Gao, S., Hendrie, H.C., Hall, K.S., Hui, S.: The relationships between age, sex, and the incidence of dementia and Alzheimer disease: a meta-analysis. Arch. Gen. Psychiatry 55(9), 809–815 (1998)

    Article  Google Scholar 

  30. Covington, M.A., McFall, J.D.: Cutting the gordian knot: the moving-average type-token ratio (MATTR). J. Quant. Linguist. 17(2), 94–100 (2010)

    Article  Google Scholar 

  31. Salsbury, T., Crossley, S.A., McNamara, D.S.: Psycholinguistic word information in second language oral discourse. Second Lang. Res. 27(3), 343–360 (2011)

    Article  Google Scholar 

  32. Brysbaert, M., New, B.: Moving beyond Kučera and Francis: a critical evaluation of current word frequency norms and the introduction of a new and improved word frequency measure for American English. Behav. Res. Methods 41, 977–990 (2009)

    Article  Google Scholar 

  33. Croisile, B., Ska, B., Brabant, M.J., Duchene, A., Lepage, Y., Aimard, G., Trillet, M.: Comparative study of oral and written picture description in patients with Alzheimer’s disease. Brain Lang. 53(1), 1–19 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vaden Masrani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Masrani, V., Murray, G., Field, T.S., Carenini, G. (2017). Domain Adaptation for Detecting Mild Cognitive Impairment. In: Mouhoub, M., Langlais, P. (eds) Advances in Artificial Intelligence. Canadian AI 2017. Lecture Notes in Computer Science(), vol 10233. Springer, Cham. https://doi.org/10.1007/978-3-319-57351-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57351-9_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57350-2

  • Online ISBN: 978-3-319-57351-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics