iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-319-48890-5_48
Criminal Investigation Oriented Saliency Detection for Surveillance Videos | SpringerLink
Skip to main content

Criminal Investigation Oriented Saliency Detection for Surveillance Videos

  • Conference paper
  • First Online:
Advances in Multimedia Information Processing - PCM 2016 (PCM 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9916))

Included in the following conference series:

  • 2400 Accesses

Abstract

Detecting the salient regions, namely locating the key regions that contain rich clues, is of great significance for better mining and analyzing the crucial information in surveillance videos. Yet, to date, the existed saliency detection methods are mainly designed to fit human perception. Nevertheless, what we value most during in surveillance videos, i.e. criminal investigation attentive objects (CIAOs) such as pedestrians, human faces, vehicles and license plates, is often different from those sensitive to human vision in general situations. In this paper, we proposed criminal investigation oriented saliency detection method for surveillance videos. A criminal investigation attentive model (CIAM) is constructed to score the occurrence probabilities of CIAOs in spatial domain and novelly utilize score to represent saliency, thus making CIAO regions more salient than non-CIAO regions. In addition, we refine the spatial domain saliency map with the motion information in temporal domain to obtain the spatio-temporal saliency map that has high distinctiveness for regions of moving CIAOs, static CIAOs, moving non-CIAOs and static non-CIAOs. Experimental results on surveillance video datasets demonstrate that the proposed method outperforms the state-of-art saliency detection methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Borji, A., Cheng, M.M., Jiang, H., et al.: Salient object detection: a survey. arXiv preprint arXiv:1411.5878 (2014)

  2. Hou, X., Zhang, L.: Saliency detection: a spectral residual approach. In: IEEE International Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007)

    Google Scholar 

  3. Seo, H.J., Milanfar, P.: Static and space-time visual saliency detection by self-resemblance. J. Vis. 9(12), 15 (2009)

    Article  Google Scholar 

  4. Valenti, R., Sebe, N., Gevers, T.: Image saliency by isocentric curvedness and color. In: IEEE International Conference on Computer Vision, pp. 2185–2192 (2009)

    Google Scholar 

  5. Achanta, R., Hemami, S., Estrada, F., et al.: Frequency-tuned salient region detection. In: IEEE International Conference on Computer Vision and Pattern Recognition, pp. 1597–1604 (2009)

    Google Scholar 

  6. Klein, D.A., Frintrop, S.: Center-surround divergence of feature statistics for salient object detection. In: IEEE International Conference on Computer Vision, pp. 2214–2219 (2011)

    Google Scholar 

  7. Achanta, R., Shaji, A., Smith, K., et al.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)

    Article  Google Scholar 

  8. Cheng, M., Mitra, N.J., Huang, X., et al.: Global contrast based salient region detection. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 569–582 (2015)

    Article  Google Scholar 

  9. Fu, H., Cao, X., Tu, Z.: Cluster-based co-saliency detection. IEEE Trans. Image Proc. 22(10), 3766–3778 (2013)

    Article  MathSciNet  Google Scholar 

  10. Zhang, J., Wang, M., Zhang, S., et al.: Spatio-chromatic context modeling for color saliency analysis. IEEE Trans. Neural Netw. Learn. Syst. 27(6), 1177–1189 (2016)

    Article  MathSciNet  Google Scholar 

  11. Chen, Y., Nguyen, T., Harish, K., et al.: Audio Matters in Visual Saliency. IEEE Trans. Circuits Syst. Video Technol. 24(11), 1992–2003 (2014)

    Article  Google Scholar 

  12. Wang, M., Hong, R., Yuan, X., et al.: Movie2Comics: towards a lively video content presentation. IEEE Trans. Multimedia 14(3), 858–870 (2012)

    Article  Google Scholar 

  13. Zhang, J., Wang, M., Gao, J., et al.: Saliency Detection with a deeper investigation of light field. In: International Joint Conference on Artificial Intelligence, pp. 2212–2218 (2015)

    Google Scholar 

  14. Perazzi, F., Krähenbühl, P., Pritch, Y., et al.: Saliency filters: contrast based filtering for salient region detection. In: IEEE International Conference on Computer Vision and Pattern Recognition, pp. 733–740 (2012)

    Google Scholar 

  15. Jiang, Z., Davis, L.: Submodular salient region detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2043–2050 (2013)

    Google Scholar 

  16. Fang, Y., Lin, W., Chen, Z., et al.: A video saliency detection model in compressed domain. IEEE Trans. Circuits Syst. Video Technol. 24(1), 27–38 (2014)

    Article  Google Scholar 

  17. Fang, Y., Wang, Z., Lin, W., et al.: Video saliency incorporating spatiotemporal cues and uncertainty weighting. IEEE Trans. Image Process. 23(9), 3910–3921 (2014)

    Article  MathSciNet  Google Scholar 

  18. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., et al.: Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1627–1645 (2010)

    Article  Google Scholar 

  19. Zhu, L., Chen, Y., Yuille, A., et al.: Latent hierarchical structural learning for object detection. In: IEEE International Conference on Computer Vision and Pattern Recognition, pp. 1062–1069 (2010)

    Google Scholar 

  20. Liao, S., Jain, A., Li, S.: A fast and accurate unconstrained face detector. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 211–223 (2016)

    Article  Google Scholar 

  21. EasyPR. https://github.com/liuruoze/EasyPR. 14 Jan 2016

  22. Brox, T., Malik, J.: Large displacement optical flow: descriptor matching in variational motion estimation. IEEE Trans. Pattern Anal. Mach. Intell. 33(3), 500–513 (2011)

    Article  Google Scholar 

  23. Gao, W., Tian, Y., Huang, T., et al.: The IEEE 1857 standard: empowering smart video surveillance systems. Intell. Syst. 29(5), 30–39 (2014)

    Article  Google Scholar 

  24. Wei, L., Tian, Y., Wang, Y., et al.: Swiss-system based cascade ranking for gait-based person re-identification. In: AAAI Conference on Artificial Intelligence, pp. 1882–1888 (2015)

    Google Scholar 

Download references

Acknowledgements

This work was partly supported by the National Natural Science Foundation of China (61231015), the National High Technology Research and Development Program of China (2015AA016306), the National Natural Science Foundation of China (61502348), the EU FP7 QUICK project under Grant Agreement (PIRSES-GA-2013-612652) and the Natural Science Fund of Hubei Province (2015CFB406).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruimin Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Chen, Y., Hu, R., Xiao, J., Liao, L., Xiao, J., Zhan, G. (2016). Criminal Investigation Oriented Saliency Detection for Surveillance Videos. In: Chen, E., Gong, Y., Tie, Y. (eds) Advances in Multimedia Information Processing - PCM 2016. PCM 2016. Lecture Notes in Computer Science(), vol 9916. Springer, Cham. https://doi.org/10.1007/978-3-319-48890-5_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48890-5_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48889-9

  • Online ISBN: 978-3-319-48890-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics