Abstract
Detecting the salient regions, namely locating the key regions that contain rich clues, is of great significance for better mining and analyzing the crucial information in surveillance videos. Yet, to date, the existed saliency detection methods are mainly designed to fit human perception. Nevertheless, what we value most during in surveillance videos, i.e. criminal investigation attentive objects (CIAOs) such as pedestrians, human faces, vehicles and license plates, is often different from those sensitive to human vision in general situations. In this paper, we proposed criminal investigation oriented saliency detection method for surveillance videos. A criminal investigation attentive model (CIAM) is constructed to score the occurrence probabilities of CIAOs in spatial domain and novelly utilize score to represent saliency, thus making CIAO regions more salient than non-CIAO regions. In addition, we refine the spatial domain saliency map with the motion information in temporal domain to obtain the spatio-temporal saliency map that has high distinctiveness for regions of moving CIAOs, static CIAOs, moving non-CIAOs and static non-CIAOs. Experimental results on surveillance video datasets demonstrate that the proposed method outperforms the state-of-art saliency detection methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Borji, A., Cheng, M.M., Jiang, H., et al.: Salient object detection: a survey. arXiv preprint arXiv:1411.5878 (2014)
Hou, X., Zhang, L.: Saliency detection: a spectral residual approach. In: IEEE International Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007)
Seo, H.J., Milanfar, P.: Static and space-time visual saliency detection by self-resemblance. J. Vis. 9(12), 15 (2009)
Valenti, R., Sebe, N., Gevers, T.: Image saliency by isocentric curvedness and color. In: IEEE International Conference on Computer Vision, pp. 2185–2192 (2009)
Achanta, R., Hemami, S., Estrada, F., et al.: Frequency-tuned salient region detection. In: IEEE International Conference on Computer Vision and Pattern Recognition, pp. 1597–1604 (2009)
Klein, D.A., Frintrop, S.: Center-surround divergence of feature statistics for salient object detection. In: IEEE International Conference on Computer Vision, pp. 2214–2219 (2011)
Achanta, R., Shaji, A., Smith, K., et al.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)
Cheng, M., Mitra, N.J., Huang, X., et al.: Global contrast based salient region detection. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 569–582 (2015)
Fu, H., Cao, X., Tu, Z.: Cluster-based co-saliency detection. IEEE Trans. Image Proc. 22(10), 3766–3778 (2013)
Zhang, J., Wang, M., Zhang, S., et al.: Spatio-chromatic context modeling for color saliency analysis. IEEE Trans. Neural Netw. Learn. Syst. 27(6), 1177–1189 (2016)
Chen, Y., Nguyen, T., Harish, K., et al.: Audio Matters in Visual Saliency. IEEE Trans. Circuits Syst. Video Technol. 24(11), 1992–2003 (2014)
Wang, M., Hong, R., Yuan, X., et al.: Movie2Comics: towards a lively video content presentation. IEEE Trans. Multimedia 14(3), 858–870 (2012)
Zhang, J., Wang, M., Gao, J., et al.: Saliency Detection with a deeper investigation of light field. In: International Joint Conference on Artificial Intelligence, pp. 2212–2218 (2015)
Perazzi, F., Krähenbühl, P., Pritch, Y., et al.: Saliency filters: contrast based filtering for salient region detection. In: IEEE International Conference on Computer Vision and Pattern Recognition, pp. 733–740 (2012)
Jiang, Z., Davis, L.: Submodular salient region detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2043–2050 (2013)
Fang, Y., Lin, W., Chen, Z., et al.: A video saliency detection model in compressed domain. IEEE Trans. Circuits Syst. Video Technol. 24(1), 27–38 (2014)
Fang, Y., Wang, Z., Lin, W., et al.: Video saliency incorporating spatiotemporal cues and uncertainty weighting. IEEE Trans. Image Process. 23(9), 3910–3921 (2014)
Felzenszwalb, P.F., Girshick, R.B., McAllester, D., et al.: Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1627–1645 (2010)
Zhu, L., Chen, Y., Yuille, A., et al.: Latent hierarchical structural learning for object detection. In: IEEE International Conference on Computer Vision and Pattern Recognition, pp. 1062–1069 (2010)
Liao, S., Jain, A., Li, S.: A fast and accurate unconstrained face detector. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 211–223 (2016)
EasyPR. https://github.com/liuruoze/EasyPR. 14 Jan 2016
Brox, T., Malik, J.: Large displacement optical flow: descriptor matching in variational motion estimation. IEEE Trans. Pattern Anal. Mach. Intell. 33(3), 500–513 (2011)
Gao, W., Tian, Y., Huang, T., et al.: The IEEE 1857 standard: empowering smart video surveillance systems. Intell. Syst. 29(5), 30–39 (2014)
Wei, L., Tian, Y., Wang, Y., et al.: Swiss-system based cascade ranking for gait-based person re-identification. In: AAAI Conference on Artificial Intelligence, pp. 1882–1888 (2015)
Acknowledgements
This work was partly supported by the National Natural Science Foundation of China (61231015), the National High Technology Research and Development Program of China (2015AA016306), the National Natural Science Foundation of China (61502348), the EU FP7 QUICK project under Grant Agreement (PIRSES-GA-2013-612652) and the Natural Science Fund of Hubei Province (2015CFB406).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Chen, Y., Hu, R., Xiao, J., Liao, L., Xiao, J., Zhan, G. (2016). Criminal Investigation Oriented Saliency Detection for Surveillance Videos. In: Chen, E., Gong, Y., Tie, Y. (eds) Advances in Multimedia Information Processing - PCM 2016. PCM 2016. Lecture Notes in Computer Science(), vol 9916. Springer, Cham. https://doi.org/10.1007/978-3-319-48890-5_48
Download citation
DOI: https://doi.org/10.1007/978-3-319-48890-5_48
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-48889-9
Online ISBN: 978-3-319-48890-5
eBook Packages: Computer ScienceComputer Science (R0)