iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-319-48680-2_28
Jensen Shannon Divergence as Reduced Reference Measure for Image Denoising | SpringerLink
Skip to main content

Jensen Shannon Divergence as Reduced Reference Measure for Image Denoising

  • Conference paper
  • First Online:
Advanced Concepts for Intelligent Vision Systems (ACIVS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10016))

  • 2301 Accesses

Abstract

This paper focuses on the use the Jensen Shannon divergence for guiding denoising. In particular, it aims at detecting those image regions where noise is masked; denoising is then inhibited where it is useless from the visual point of view. To this aim a reduced reference version of the Jensen Shannon divergence is introduced and it is used for determining a denoising map. The latter separates those image pixels that require to be denoised from those that have to be leaved unaltered. Experimental results show that the proposed method allows to improve denoising performance of some simple and conventional denoisers, in terms of both peak signal to noise ratio (PSNR) and structural similarity index (SSIM). In addition, it can contribute to reduce the computational effort of some performing denoisers, while preserving the visual quality of denoised images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bruni, V., Rossi, E., Vitulano, D.: On the equivalence between Jensen-Shannon divergence and Michelson contrast. IEEE Trans. Inf. Theory 58(7), 4278–4288 (2012)

    Article  MathSciNet  Google Scholar 

  2. Bruni, V., Rossi, E., Vitulano, D.: Jensen-Shannon divergence for visual quality assessment. Sig. Image Video Process. 7(3), 411–421 (2013)

    Article  Google Scholar 

  3. Bruni, V., Vitulano, D.: Evaluation of degraded images using adaptive Jensen-Shannon divergence. In: Proceedings of ISPA, Trieste, Italy, September 2013

    Google Scholar 

  4. Bruni, V., De Canditiis, D., Vitulano, D.: Speed-up of video enhancement based on human perception. Sig. Image Video Process. 8(7), 1199–1209 (2014)

    Article  Google Scholar 

  5. Chandler, D.M., Hemami, S.S.: VSNR: a wavelet-based Visual Signal-to-Noise Ratio for natural images. IEEE Trans. Image Process. 16(9), 2284–2298 (2007)

    Article  MathSciNet  Google Scholar 

  6. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, Hoboken (1991)

    Book  MATH  Google Scholar 

  7. Hontsch, I., Karam, L.: Adaptive image coding with perceptual distortion control. IEEE Trans. Image Process. 11(3), 213–222 (2002)

    Article  Google Scholar 

  8. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  9. Legge, G.E.: A power law for contrast discrimination. Vis. Res. 21, 457–467 (1981)

    Article  Google Scholar 

  10. Frazor, R.A., Geisler, W.S.: Local luminance and contrast in natural images. Vis. Res. 46, 1585–1598 (2006)

    Article  Google Scholar 

  11. Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press, New York (1998)

    MATH  Google Scholar 

  12. Topsoe, F.: Some inequalities for information divergence and related measures of discrimination. IEEE Trans. Inf. Theory 46(4), 1602–1609 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error measurement to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  14. Winkler, S.: Digital Video Quality. Wiley, Vision Models and Metrics, Hoboken (2005)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vittoria Bruni .

Editor information

Editors and Affiliations

Appendix

Appendix

Let us consider Eqs. (8) and (9). Since \(\frac{2x}{2 + x} \le \log (1 + x) \le x \), then \(\frac{2 (a + b)}{(6\sigma + a + b)^2} \le \bar{t} \le \frac{1}{3 \sigma }\) and then

$$\begin{aligned} D_{JS} \le \frac{1}{2} \bigg ( e^{-\frac{2a (a + b)}{(6\sigma + a + b)^2}} + e^{-\frac{2b (a + b)}{6\sigma + a + b)^2}} \bigg ) \bigg ( 1 + \frac{\sigma _y^2}{2} \bigg ( \frac{1}{3\sigma } \bigg )^2 \bigg ), \end{aligned}$$
(14)

where \(a = M_X - E [y]\) e \(b = E [y] - m_X\).

In general, for \(x \in [0, \sim 1.59]\), it holds \(e^{-x} \le 1-\frac{x}{2}\). Hence, by assuming that

$$\begin{aligned} \frac{2a(a + b)}{(6\sigma + a + b)^2} \le \frac{3}{2}, \quad \frac{2b(a + b)}{(6\sigma + a + b)^2} \le \frac{3}{2}, \end{aligned}$$
(15)

\(a + b\sim 6\sigma _I\) and \(6\sigma + a + b \sim 6\sigma _y\), we have

$$\begin{aligned} D_{JS} \le \frac{1}{2} \bigg ( 1 - \frac{(a + b)^2}{2(6\sigma + a + b)^2} \bigg ) \bigg ( 1 + \frac{\sigma _y^2}{18\sigma ^2} \bigg ). \end{aligned}$$

Since \(\sigma _Y^2 =\sigma _X^2 +\sigma ^2 \), then

$$\begin{aligned} \bigg ( 1 - \frac{36 \sigma _X^2}{72 \sigma _Y^2}) \bigg ) \bigg ( 1 + \frac{\sigma _Y^2}{18\sigma ^2} \bigg ) \le 1 \Leftrightarrow - \frac{\sigma _X^2}{2\sigma _Y^2} + \frac{\sigma _Y^2}{18 \sigma ^2} - \frac{\sigma _X^2 \sigma _Y^2}{36\sigma _X^2 \sigma ^2} \le 0 \end{aligned}$$
$$\begin{aligned} \frac{17 - \sqrt{217}}{2}\sigma ^2 \le \sigma _Y^2 \le \frac{17 + \sqrt{217}}{2} \sigma ^2, \; \end{aligned}$$

i.e. \( \quad 0.14 \le \frac{\sigma _X^2}{\sigma ^2} \le 14.87, \quad \text {with} \quad \sigma ^2 \ge 1.\)

Observation

   If \(\min (a,b) \le \max (a,b) \le 3 \min (a,b)\), then constraints in Eq. (15) are satisfied. More in general, by setting \(\sigma = k(a + b), k \in \mathbf {R}\), then

$$\begin{aligned} \frac{2a(a + b)}{(6\sigma + a + b)^2} \le \frac{2(a + b)^2}{(a + b)(6k + 1)^2} \le \frac{3}{2} \Leftrightarrow k \ge \frac{2-\sqrt{3}}{6 \sqrt{3}} \Rightarrow \frac{\sigma _X}{\sigma } \le \frac{\sqrt{3}}{2 - \sqrt{3} } \sim 5.6. \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Bruni, V., Vitulano, D. (2016). Jensen Shannon Divergence as Reduced Reference Measure for Image Denoising. In: Blanc-Talon, J., Distante, C., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2016. Lecture Notes in Computer Science(), vol 10016. Springer, Cham. https://doi.org/10.1007/978-3-319-48680-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48680-2_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48679-6

  • Online ISBN: 978-3-319-48680-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics