iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-319-40648-0_1
Temporal Logic Framework for Performance Analysis of Architectures of Systems | SpringerLink
Skip to main content

Temporal Logic Framework for Performance Analysis of Architectures of Systems

  • Conference paper
  • First Online:
NASA Formal Methods (NFM 2016)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 9690))

Included in the following conference series:

Abstract

This paper presents a formal mathematical framework for performance analysis (in terms of success of given tasks) of complex systems, ATLAS. This method interestingly combines temporal aspects (for the description of the complex system) and probabilities (to represent performance). The system’s task to be evaluated is described using a temporal language, the ATLAS language: the architecture of the task is decomposed into elementary functionalities and temporal operators specify their arrangement. Starting with the success probabilities of the elementary functionalities, it is then possible to compute the overall success probability of the task using mathematical formulae which are proven in this paper. The method is illustrated with a deorbitation task for a retired satellite called ENVISAT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832–843 (1983)

    Article  MATH  Google Scholar 

  2. Allen, J.F.: Temporal reasoning and planning. In: Reasoning about Plans, pp. 1–67. Morgan Kaufmann Publishers Inc., San Francisco (1991)

    Google Scholar 

  3. Bertrand, S., Donath, T., Kervarc, R., Lancien, A., Louyot, C., Merit, S., Piernas, A., Prudhomme, S.: Probabilistic performance evaluation of tactical ballistic missile defence architectures. In: 6th International Conference on Missile Defence (2009)

    Google Scholar 

  4. Bertrand, S., Prudhomme, S., Merit, S., Jolly, C., Kervarc, R., Donath, T.: Space systems’ vulnerability assessment to space debris: a methodology and a program. In: 2012 IEEE Aerospace Conference, pp. 1–15. IEEE (2012)

    Google Scholar 

  5. Bobbio, A., Ciancamerla, E., Franceschinis, G., Gaeta, R., Minichino, M., Portinale, L.: Sequential application of heterogeneous models for the safetyanalysis of a control system: a case study. Reliab. Eng. Syst. Saf. 81, 269–280 (2003)

    Article  Google Scholar 

  6. Bonnal, C., Ruault, J.M., Desjean, M.C.: Active debris removal: recent progress and current trends. Acta Astronaut. 85, 51–60 (2013)

    Article  Google Scholar 

  7. Chan, F.K.: Spacecraft Collision Probability. Aerospace Press El Seg., CA (2008)

    Book  Google Scholar 

  8. Chaochen, Z., Hoare, C.A.R., Ravn, A.P.: A calculus of durations. Inf. Process. Lett. 40(5), 269–276 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. Clerc, X., Retat, I.: Astrium vision on space debris removal. In: Proceeding of the 63rd International Astronautical Congress (IAC 2012), vol. 15, Napoli, Italy (2012)

    Google Scholar 

  10. Dhillon, B.S.: Design Reliability: Fundamentals and Applications. CRC Press, Boca Raton (1999)

    Book  Google Scholar 

  11. Dutuit, Y., Châtelet, E., Signoret, J.P., Thomas, P.: Dependability modelling and evaluation by using stochastic petri nets: application to two test cases. Reliab. Eng. Syst. Saf. 55(2), 117–124 (1997)

    Article  Google Scholar 

  12. Hansen, K.M., Ravn, A.P., Stavridou, V.: From safety analysis to software requirements. IEEE Trans. Softw. Eng. 24(7), 573–584 (1998)

    Article  Google Scholar 

  13. Hansen, M.R., Chaochen, Z.: Duration calculus: logical foundations. Formal Aspects Comput. 9(3), 283–330 (1997)

    Article  MATH  Google Scholar 

  14. van der Heijden, M., Lucas, P.J.: A probabilistic logic of qualitative time. In: Probabilistic Problem Solving in BioMedicine, p. 69 (2011)

    Google Scholar 

  15. Kang, C., Golay, M.: A bayesian belief network-based advisory system for operational availability focused diagnosis of complex nuclear power systems. Expert Syst. Appl. 17(1), 21–32 (1999)

    Article  Google Scholar 

  16. Kervarc, R., Bertrand, S., Prudhomme, S., Elie, A., Carle, P., Donath, T.: A functional approach to the assessment of debris effect on spatial systems. In: MASCOT&ISGG 2012 (2012)

    Google Scholar 

  17. Kervarc, R., Bourrely, J., Quillien, C.: A generic logical-temporal performance analysis method for complex systems. Math. Comput. Simul. 81, 717–730 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lang, T., Kervarc, R., Bertrand, S., Carle, P., Donath, T., Destefanis, R., Grassi, L., Tiboldo, F., Schäfer, F., Kempf, S., et al.: Short and long term efficiencies of debris risk reduction measures: application to a european LEO mission. Adv. Space Res. 55(1), 282–296 (2015)

    Article  Google Scholar 

  19. Morio, J., Piet-Lahanier, H., Poirion, F., Marzat, J., Seren, C., Bertrand, S., Brucy, Q., Kervarc, R., et al.: An overview of probabilistic performance analysis methods for large scale and time-dependent systems. AerospaceLab 3(4), 1 (2012)

    Google Scholar 

  20. Nourelfath, M., Dutuit, Y.: A combined approach to solve the redundancy optimization problem for multi-state systems under repair policies. Reliab. Eng. Syst. Saf. 86(3), 205–213 (2004)

    Article  Google Scholar 

  21. Perez, E.: Vega users manual. ARIANESPACE (3), 154 (2012)

    Google Scholar 

  22. Perez, E.: Soyuz from the guiana space centre users manual. Technical report Arianespace (2012)

    Google Scholar 

  23. Schellhorn, G., Thums, A., Reif, W.: Formal fault tree semantics. In: Proceedings of the 6th World Conference on Integrated Design & Process Technology (2002)

    Google Scholar 

  24. Taylor, J.: Fault tree and cause consequence analysis for control software validation. Technical report (1982)

    Google Scholar 

  25. Vesely, W.E., Goldberg, F.F., Roberts, N.H., Haasl, D.F.: Fault tree handbook. Technical report, DTIC Document (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariane Piel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Piel, A., Bourrely, J., Lala, S., Bertrand, S., Kervarc, R. (2016). Temporal Logic Framework for Performance Analysis of Architectures of Systems. In: Rayadurgam, S., Tkachuk, O. (eds) NASA Formal Methods. NFM 2016. Lecture Notes in Computer Science(), vol 9690. Springer, Cham. https://doi.org/10.1007/978-3-319-40648-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40648-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40647-3

  • Online ISBN: 978-3-319-40648-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics