iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-319-40528-5_6
Scalability of Classical Algebraic Multigrid for Elasticity to Half a Million Parallel Tasks | SpringerLink
Skip to main content

Scalability of Classical Algebraic Multigrid for Elasticity to Half a Million Parallel Tasks

  • Conference paper
  • First Online:
Software for Exascale Computing - SPPEXA 2013-2015

Abstract

The parallel performance of several classical Algebraic Multigrid (AMG) methods applied to linear elasticity problems is investigated. These methods include standard AMG approaches for systems of partial differential equations such as the unknown and hybrid approaches, as well as the more recent global matrix (GM) and local neighborhood (LN) approaches, which incorporate rigid body modes (RBMs) into the AMG interpolation operator. Numerical experiments are presented for both two- and three-dimensional elasticity problems on up to 131,072 cores (and 262,144 MPI processes) on the Vulcan supercomputer (LLNL, USA) and up to 262,144 cores (and 524,288 MPI processes) on the JUQUEEN supercomputer (JSC, Jülich, Germany). It is demonstrated that incorporating all RBMs into the interpolation leads generally to faster convergence and improved scalability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Augustin, C.M., Neic, A., Liebmann, M., Prassl, A.J., Niederer, S.A., Haase, G., Plank, G.: Anatomically accurate high resolution modeling of human whole heart electromechanics: a strongly scalable algebraic multigrid solver method for nonlinear deformation. J. Comput. Phys. 305, 622–646 (2016)

    Article  MathSciNet  Google Scholar 

  2. Baker, A.H., Kolev, T.V., Yang, U.M.: Improving algebraic multigrid interpolation operators for linear elasticity problems. Numer. Linear Algebra Appl. 17 (2–3), 495–517 (2010). http://dx.doi.org/10.1002/nla.688

    MathSciNet  MATH  Google Scholar 

  3. Blatt, M., Ippisch, O., Bastian, P.: A massively parallel algebraic multigrid preconditioner based on aggregation for elliptic problems with heterogeneous coefficients. arXiv preprint arXiv:1209.0960 (2013)

    Google Scholar 

  4. Braess, D.: Towards algebraic multigrid for elliptic problems of second order. Computing 55 (4), 379–393 (1995). http://dx.doi.org/10.1007/BF02238488

    Article  MathSciNet  MATH  Google Scholar 

  5. Braess, D.: Finite Elemente, vol. 4. Springer, Berlin (2007)

    MATH  Google Scholar 

  6. Brezina, M., Cleary, A.J., Falgout, R.D., Jones, J.E., Manteufel, T.A., McCormick, S.F., Ruge, J.W.: Algebraic multigrid based on element interpolation (AMGe). SIAM J. Sci. Comput. 22, 1570–1592 (2000). Also LLNL technical report UCRL-JC-131752

    Google Scholar 

  7. Brezina, M., Tong, C., Becker, R.: Parallel algebraic multigrid methods for structural mechanics. SIAM J. Sci. Comput. 27 (5), 1534–1554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bulgakov, V.E.: Multi-level iterative technique and aggregation concept with semi-analytical preconditioning for solving boundary value problems. Commun. Numer. Methods Eng. 9 (8), 649–657 (1993). http://dx.doi.org/10.1002/cnm.1640090804

    Article  MathSciNet  MATH  Google Scholar 

  9. Cleary, A.J., Falgout, R.D., Henson, V.E., Jones, J.E., Manteuffel, T.A., McCormick, S.F., Miranda, G.N., Ruge, J.W.: Robustness and scalability of algebraic multigrid. SIAM J. Sci. Comput. 21, 1886–1908 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Clees, T.: AMG Strategies for ODE Systems with Applications in Industrial Semiconductor Simulation. Shaker Verlag GmbH, Germany (2005)

    Google Scholar 

  11. De Sterck, H., Yang, U.M., Heys, J.J.: Reducing complexity in parallel algebraic multigrid preconditioners. SIAM J. Matrix Anal. Appl. 27 (4), 1019–1039 (2006). http://dx.doi.org/10.1137/040615729

    Article  MathSciNet  MATH  Google Scholar 

  12. De Sterck, H., Falgout, R.D., Nolting, J.W., Yang, U.M.: Distance-two interpolation for parallel algebraic multigrid. Numer. Linear Algebra Appl. 15, 115–139 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dohrmann, C.R.: Interpolation operators for algebraic multigrid by local optimization. SIAM J. Sci. Comput. 29 (5), 2045–2058 (electronic) (2007). http://dx.doi.org/10.1137/06066103X

    Google Scholar 

  14. Griebel, M., Oeltz, D., Schweitzer, A.: An algebraic multigrid for linear elasticity. J. Sci. Comput. 25 (2), 385–407 (2003)

    MathSciNet  MATH  Google Scholar 

  15. Henson, V.E., Vassilevski, P.S.: Element-free AMGe: general algorithms for computing interpolation weights in AMG. SIAM J. Sci. Comput. 23 (2), 629–650 (electronic) (2001). http://dx.doi.org/10.1137/S1064827500372997. copper Mountain Conference (2000)

    Google Scholar 

  16. Henson, V.E., Yang, U.M.: BoomerAMG: a parallel algebraic multigrid solver and preconditioner. Appl. Numer. Math. 41, 155–177 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. hypre: High performance preconditioners. http://www.llnl.gov/CASC/hypre/

  18. Lanser, M.: Nonlinear FETI-DP and BDDC Methods. Ph.D. thesis, Universität zu Köln (2015)

    Google Scholar 

  19. Muresan, A.C., Notay, Y.: Analysis of aggregation-based multigrid. SIAM J. Sci. Comput. 30, 1082–1103 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Notay, Y.: An aggregation-based algebraic multigrid method. Electron. Trans. Numer. Anal. 37, 123–146 (2010)

    MathSciNet  MATH  Google Scholar 

  21. Notay, Y., Napov, A.: Algebraic analysis of aggregation-based multigrid. Numer. Linear Algebra Appl. 18, 539–564 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ruge, J.W.: AMG for problems of elasticity. Appl. Math. Comput. 19, 293–309 (1986)

    MATH  Google Scholar 

  23. Ruge, J.W., Stüben, K.: Algebraic multigrid (AMG). In: McCormick, S.F. (ed.) Multigrid Methods. Frontiers in Applied Mathematics, vol. 3, pp. 73–130. SIAM, Philadelphia (1987)

    Chapter  Google Scholar 

  24. Stephan, M., Docter, J.: JUQUEEN: IBM blue gene/QⓇsupercomputer system at the Jülich Supercomputing Centre. JLSRF 1, A1 (2015). http://dx.doi.org/10.17815/jlsrf-1-18

    Article  Google Scholar 

  25. Stüben, K.: An introduction to algebraic multigrid. In: Multigrid, pp. 413–532. Academic Press, London/San Diego (2001). also available as GMD Report 70, November 1999

    Google Scholar 

  26. Trottenberg, U., Oosterlee, C.W., Schüller, A.: Multigrid. Academic Press, London/San Diego (2001)

    MATH  Google Scholar 

  27. Vaněk, P., Mandel, J., Brezina, M.: Algebraic multigrid by smooth aggregation for second and fourth order elliptic problems. Computing 56, 179–196 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  28. Yang, U.M.: Parallel algebraic multigrid methods – high performance preconditioners. In: Bruaset, A., Tveito, A. (eds.) Numerical Solutions of Partial Differential Equations on Parallel Computers. Lecture Notes in Computational Science and Engineering, pp. 209–236. Springer, Berlin (2006)

    Chapter  Google Scholar 

  29. Yang, U.M.: On long-range interpolation operators for aggressive coarsening. Numer. Linear Algebra Appl. 17, 453–472 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the German Research Foundation (DFG) through the Priority Program 1648 “Software for Exascale Computing” (SPPEXA ) under KL 2094/4-1 and RH 122/2-1. The authors also gratefully acknowledge the use of the Vulcan supercomputer at Lawrence Livermore National Laboratory. Partial support for this work was provided through Scientific Discovery through Advanced Computing (SciDAC ) program funded by U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research (and Basic Energy Sciences/Biological and Environmental Research/High Energy Physics/Fusion Energy Sciences/Nuclear Physics). This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The authors gratefully acknowledge the Gauss Centre for Supercomputing (GCS) for providing computing time through the John von Neumann Institute for Computing (NIC) on the GCS share of the supercomputer JUQUEEN [24] at Jülich Supercomputing Centre (JSC). GCS is the alliance of the three national supercomputing centres HLRS (Universität Stuttgart), JSC (Forschungszentrum Jülich), and LRZ (Bayerische Akademie der Wissenschaften), funded by the German Federal Ministry of Education and Research (BMBF) and the German State Ministries for Research of Baden-Württemberg (MWK), Bayern (StMWFK) and Nordrhein-Westfalen (MIWF).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Allison H. Baker , Axel Klawonn , Tzanio Kolev , Martin Lanser , Oliver Rheinbach or Ulrike Meier Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Baker, A.H., Klawonn, A., Kolev, T., Lanser, M., Rheinbach, O., Yang, U.M. (2016). Scalability of Classical Algebraic Multigrid for Elasticity to Half a Million Parallel Tasks. In: Bungartz, HJ., Neumann, P., Nagel, W. (eds) Software for Exascale Computing - SPPEXA 2013-2015. Lecture Notes in Computational Science and Engineering, vol 113. Springer, Cham. https://doi.org/10.1007/978-3-319-40528-5_6

Download citation

Publish with us

Policies and ethics