iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-319-33625-1_11
Solving the Manufacturing Cell Design Problem via Invasive Weed Optimization | SpringerLink
Skip to main content

Solving the Manufacturing Cell Design Problem via Invasive Weed Optimization

  • Conference paper
  • First Online:
Artificial Intelligence Perspectives in Intelligent Systems

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 464))

Abstract

Manufacturing plants are commonly organized in cells containing machines that process different parts of a given product. The Manufacturing Cell Design Problem (MCDP) aims at efficiently organizing the machines into cells in order to increase productivity by minimizing the inter-cell moves of parts. In this paper, we present a new approach based on Invasive Weed Optimization (IWO) for solving such a problem. The IWO algorithm is a recent metaheuristic inspired on the colonization behavior of the invasive weeds in agriculture. IWO represents the solutions as weeds that grow and produce seeds to be randomly dispersed over the search area. We additionally incorporate a binary neighbor operator in order to efficiently handle the binary nature of the problem. The experimental results demonstrate the efficiency of the proposed approach which is able to reach several global optimums for a set of 90 well-known MCDP instances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aljaber, N., Baek, W., Chen, C.: A tabu search approach to the cell formation problem. Comput. Ind. Eng. 32(1), 169–185 (1997)

    Article  Google Scholar 

  2. Boctor, F.F.: A linear formulation of the machine-part cell formation problem. Int. J. Prod. Res. 29(2), 343–356 (1991)

    Article  Google Scholar 

  3. Boulif, M., Atif, K.: A new branch-&-bound-enhanced genetic algorithm for the manufacturing cell formation problem. Comput. Oper. Res. 33, 2219–2245 (2006)

    Article  MATH  Google Scholar 

  4. Durán, O., Rodriguez, N., Consalter, L.: Collaborative particle swarm optimization with a data mining technique for manufacturing cell design. Expert Syst. Appl. 37(2), 1563–1567 (2010)

    Article  Google Scholar 

  5. James, T., Brown, E., Keeling, K.: A hybrid grouping genetic algorithm for the cell formation problem. Comput. Oper. Res. 34(7), 2059–2079 (2007)

    Article  MATH  Google Scholar 

  6. Kusiak, A., Chow, W.: Efficient solving of the group technology problem. J. Manuf. Syst. 6, 117–124 (1987)

    Article  Google Scholar 

  7. Lenin, I., Reddy, B.R., Kalavathi, M.S.: Hybrid-invasive weed optimization particle swarm optimization algorithm for solving optimal reactive power dispatch problem. Int. J. Res. Electron. Commun. Technol. (IJRECT 2014), 1(1), 41–45 (2014)

    Google Scholar 

  8. Lozano, S., Díaz, A., Eguía, I., Onieva, L.: A one-step tabu search algorithm for manufacturing cell design. J. Oper. Res. Soc. 50(5) (1999)

    Google Scholar 

  9. Mallahzadeh, A.R.R., Oraizi, H., Davoodi-Rad, Z.: Application of the invasive weed optimization technique for antenna configurations. Prog. Electromagnetics Res. 79, 137–150 (2008)

    Article  Google Scholar 

  10. Medina, P.D., Cruz, E.A., Pinzon, M.: Generacion de celdas de manufactura usando el algoritmo de ordenamiento binario (aob). Scientia et Technica Ao XVI 16(44), 106–110 (2010)

    Google Scholar 

  11. Mehrabian, A.R., Lucas, C.: A novel numerical optimization algorithm inspired from weed colonization. Ecol. Inform. 1(4), 355–366 (2006)

    Article  Google Scholar 

  12. Mururgan, M., Selladurai, V.: Manufacturing cell design with reduction in setup time through genetic algorithm. J. Theor. Appl. Inf. Technol. 3(1), 76–97 (2006)

    Google Scholar 

  13. Nsakanda, A., Diaby, M., Price, W.: Hybrid genetic approach for solving large-scale capacitated cell formation problems with multiple routings. Eur. J. Oper. Res. 171(3), 1051–1070 (2006)

    Article  MATH  Google Scholar 

  14. Olivia-Lopez, E., Purcheck, G.: Load balancing for group technology planning and control. Int. J. MTDR 19, 259–268 (1979)

    Google Scholar 

  15. Purcheck, G.: A linear—programming method for the combinatorial grouping of an incomplete set. J. Cybern. 5, 51–58 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  16. Soto, R., Kjellerstrand, H., Durán, O., Crawford, B., Monfroy, E., Paredes, F.: Cell formation in group technology using constraint programming and boolean satisfiability. Expert Syst. Appl. 39(13), 11423–11427 (2012)

    Article  Google Scholar 

  17. Veenhuis, C.: Binary invasive weed optimization. Second World Congress on Nature and Biologically Inspired Computing (NaBIC), pp. 449–454 (2010)

    Google Scholar 

  18. Venugopal, V., Narendran, T.: A genetic algorithm approach to the machine-component grouping problem with multiple objectives. Comput. Ind. Eng. 22(4), 469–480 (1992)

    Article  Google Scholar 

  19. Wu, T., Chang, C., Chung, S.: A simulated annealing algorithm for manufacturing cell formation problems. Expert Syst. Appl. 34(3), 1609–1617 (2008)

    Article  Google Scholar 

  20. Xambre, A.R., Vilarinho, P.M.: A simulated annealing approach for manufacturing cell formation with multiple identical machines. Eur. J. Oper. Res. 151(2), 434–446 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yin, Y., Yasuda, K.: Manufacturing cells design in consideration of various production. Int. J. Prod. Res. 40(4), 885–906 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Soto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Soto, R., Crawford, B., Castillo, C., Paredes, F. (2016). Solving the Manufacturing Cell Design Problem via Invasive Weed Optimization. In: Silhavy, R., Senkerik, R., Oplatkova, Z., Silhavy, P., Prokopova, Z. (eds) Artificial Intelligence Perspectives in Intelligent Systems. Advances in Intelligent Systems and Computing, vol 464. Springer, Cham. https://doi.org/10.1007/978-3-319-33625-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33625-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33623-7

  • Online ISBN: 978-3-319-33625-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics