Abstract
In traditional visual cryptography scheme (VCS), each pixel of secret image is encrypted into m(\( \geqslant 1 \)) subpixels in the share images. Unfortunately, recovered image will be distorted when the pixel expansion is not a square number. In order to reveal the information of the secret image faithfully, aspect ratio of the recovered image should be kept invariant in VCS. In this paper, we investigate the encryption process of traditional VCS and find that it is able to be divided into mapping stage and size invariant VCS (SIVCS) stage. By improving algorithms of these two stages respectively, we propose a novel construction of aspect ratio invariant VCS (ARIVCS) with flexible pixel expansion. Experimental results show the effectiveness of our scheme that it avoids the defects found in previous research works such as the details distortion problem, thin line problems and blurry edge problem. Meanwhile, our scheme eliminates the jaggy phenomenon to a certain extent when the pixel expansion is large which contributes to improving the visual quality of ARIVCS significantly.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Naor, M., Shamir, A.: Visual cryptography. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 1–12. Springer, Heidelberg (1995)
Liu, F., Yan, W.Q.: Visual Cryptography for Image Processing and Security - Theory, Methods, and Applications, pp. 1-143. Springer, Switzerland (2014). ISBN 978-3-319-09643-8
Kuwakado, H., Tanaka, H.: Image size invariant visual cryptography. IEICE Trans. Fund. Electron. Commun. Comput. Sci. 82(10), 2172–2177 (1999)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)
Yang, C.N.: New visual secret sharing schemes using probabilistic method. Pattern Recogn. Lett. 25, 481–494 (2004)
Hou, Y.C., Tu, S.F.: Visual cryptography techniques for color images without pixel expansion. J. Inf. Technol. Soc. 1, 95–110 (2004). (in Chinese)
Hou, Y.C., Tu, S.F.: A visual cryptographic technique for chromatic images using multi-pixel encoding method. J. Res. Pract. Inf. Technol. 37(72), 179–192 (2005)
Cimato, S., De Prisco, R., De Santis, A.: Probabilistic visual cryptography schemes. Comput. J. 49(1), 97–107 (2006)
Tu, S.F., Hou, Y.C.: Design of visual cryptographic methods with smoothlooking decoded images of invariant size for grey-level images. The Imaging Sci. J. 55(2), 90–101 (2007)
Chen, Y.F., Chan, Y.K., Huang, C.C., Tsai, M.H., Chu, Y.P.: A multiple-level visual secret-sharing scheme without image size expansion. Inf. Sci. 177(21), 4696–4710 (2007)
Lin, S.J., Chen, S.K., Lin, J.C.: Flip visual cryptography (FVC) with perfect security, conditionally-optimal contrast, and no expansion. J. Vis. Commun. Image Represent. 21(8), 900–916 (2010)
Liu, F., Guo, T., Wu, C.K., Qian, L.: Improving the visual quality of size invariant visual cryptography scheme. J. Vis. Commun. Image Represent. 23(2), 331–342 (2012)
Chen, T.H., Tsao, K.H.: Threshold visual secret sharing by random grids. J. Syst. Softw. 84(7), 1197–1208 (2011)
Guo, T., Liu, F., Wu, C.K.: Threshold visual secret sharing by random grids with improved contrast. J. Syst. Softw. 86(8), 2094–2109 (2013)
Lee, Y.S., Wang, B.J., Chen, T.H.: Quality-improved threshold visual secret sharing scheme by random grids. IET Image Process. 7(2), 137–143 (2013)
Wu, X.T., Liu, T., Sun, W.: Improving the visual quality of random grid-based visual secret sharing via error diffusion. J. Vis. Commun. Image Represent. 24(5), 552–566 (2013)
De Prisco, R., De Santis, A.: On the relation of random grid and deterministic visual cryptography. IEEE Trans. Inf. Forensics Secur. 9(4), 653–665 (2014)
Shyu, S.J.: Visual cryptograms of random grids for threshold access structures. Theoret. Comput. Sci. 565, 30–49 (2015)
Liu, F., Guo, T., Wu, C.K., Yang, C.-N.: Flexible visual cryptography scheme without distortion. In: Shi, Y.Q., Kim, H.-J., Perez-Gonzalez, F. (eds.) IWDW 2011. LNCS, vol. 7128, pp. 211–227. Springer, Heidelberg (2012)
Yang, C.N., Chen, P.W., Shih, H.W., Kim, C.: Aspect ratio invariant visual cryptography by image filtering and resizing. Pers. Ubiquit. Comput. 17(5), 843–850 (2013)
Li, P., Ma, P.J., Li, D.: Aspect ratio invariant visual cryptography scheme with optional size expansion. In: Eighth International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP), pp. 219–222. IEEE (2012)
Yang, C.N., Chen, T.S.: Aspect ratio invariant visual secret sharing schemes with minimum pixel expansion. Pattern Recogn. Lett. 26(2), 193–206 (2005)
Yang, C.N., Chen, T.S.: Reduce shadow size in aspect ratio invariant visual secret sharing schemes using a square block-wise operation. Pattern Recogn. 39(7), 1300–1314 (2006)
Yang, C.N., Lin, C.Y.: Almost-aspect-ratio-invariant visual cryptography without adding extra subpixels. Inf. Sci. 312, 131–151 (2015)
Acknowledgments
Many thanks to the anonymous reviewers for their valuable comments to improve our work. This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences No. Y2W0012102 and the IIE Cryptography Research Project No. Y5X0061102.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Wang, W., Liu, F., Yan, W., Shen, G., Guo, T. (2016). An Improved Aspect Ratio Invariant Visual Cryptography Scheme with Flexible Pixel Expansion. In: Shi, YQ., Kim, H., Pérez-González, F., Echizen, I. (eds) Digital-Forensics and Watermarking. IWDW 2015. Lecture Notes in Computer Science(), vol 9569. Springer, Cham. https://doi.org/10.1007/978-3-319-31960-5_34
Download citation
DOI: https://doi.org/10.1007/978-3-319-31960-5_34
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-31959-9
Online ISBN: 978-3-319-31960-5
eBook Packages: Computer ScienceComputer Science (R0)