iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-319-30858-6_10
A Quantitative Approach to Characterize MR Contrasts with Histology | SpringerLink
Skip to main content

A Quantitative Approach to Characterize MR Contrasts with Histology

  • Conference paper
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2015)

Abstract

Immunohistochemistry is widely used as a gold standard to inspect tissues, characterize their structure and detect pathological alterations. As such, the joint analysis of histological images and other imaging modalities (MRI, PET) is of major interest to interpret these physical signals and establish their correspondence with the biological constitution of the tissues. However, it is challenging to provide a meaningful characterization of the signal specificity. In this paper, we propose an integrated method to quantitatively evaluate the discriminative power of imaging modalities. This method was validated using a macaque brain dataset containing: 3 immunohistochemically stained and 1 histochemically stained series, 1 photographic volume and 1 in vivo T2 weighted MRI. First, biological regions of interest (ROIs) were automatically delineated from histological sections stained for markers of interest and mapped on the target non-specific modalities through co-registration. These non-overlapping ROIs were considered ground truth for later classification. Voxels were evenly split in training and testing sets for a logistic regression model. The statistical significance of resulting accuracy scores was evaluated through null distribution simulations. Such an approach could be of major interest to assess relevant biological characteristics from various imaging modalities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mega, M.S., Chen, S.S., Thompson, P.M., Woods, R.P., Karaca, T.J., Tiwari, A., Vinters, H.V., Small, G.W., Toga, A.W.: Mapping histology to metabolism: coregistration of stained whole-brain sections to premortem PET in Alzheimer’s disease. Neuroimage 5, 147–153 (1997)

    Article  Google Scholar 

  2. Piert, M., Park, H., Khan, A., Siddiqui, J., Hussain, H., Chenevert, T., Wood, D., Johnson, T., Shah, R.B., Meyer, C.: Detection of aggressive primary prostate cancer with 11C-choline PET/CT using multimodality fusion techniques. J. Nucl. Med. 50, 1585–1593 (2009)

    Article  Google Scholar 

  3. Lavisse, S., Guillermier, M., Hérard, A.-S., Petit, F., Delahaye, M., Van Camp, N., Ben Haim, L., Lebon, V., Remy, P., Dollé, F., Delzescaux, T., Bonvento, G., Hantraye, P., Escartin, C.: Reactive astrocytes overexpress TSPO and are detected by TSPO positron emission tomography imaging. J. Neurosci. 32, 10809–10818 (2012)

    Article  Google Scholar 

  4. Bürgel, U., Schormann, T., Schleicher, A., Zilles, K.: Mapping of histologically identified long fiber tracts in human cerebral hemispheres to the MRI volume of a reference brain: position and spatial variability of the optic radiation. Neuroimage 10, 489–499 (1999)

    Article  Google Scholar 

  5. Ourselin, S., Roche, A., Subsol, G., Pennec, X., Ayache, N.: Reconstructing a 3D structure from serial histological sections. Image Vis. Comput. 19, 25–31 (2001)

    Article  Google Scholar 

  6. Bardinet, E., Ourselin, S., Dormont, D., Malandain, G., Tandé, D., Parain, K., Ayache, N., Yelnik, J.: Co-registration of histological, optical and MR data of the human brain. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002, Part I. LNCS, vol. 2488, pp. 548–555. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  7. Malandain, G., Bardinet, E., Nelissen, K., Vanduffel, W.: Fusion of autoradiographs with an MR volume using 2-D and 3-D linear transformations. Neuroimage 23, 111–127 (2004)

    Article  Google Scholar 

  8. Lebenberg, J., Hérard, A., Dubois, A., Dhenain, M., Hantraye, P., Delzescaux, T.: A combination of atlas-based and voxel-wise approaches to analyze metabolic changes in autoradiographic data from Alzheimer’s mice. Neuroimage 57, 1447–1457 (2011)

    Article  Google Scholar 

  9. Oh, S.W., Harris, J.A., Ng, L., Winslow, B., Cain, N., Mihalas, S., Wang, Q., Lau, C., Kuan, L., Henry, A.M., Mortrud, M.T., Ouellette, B., Nguyen, T.N., Sorensen, S.A., Slaughterbeck, C.R., Wakeman, W., Li, Y., Feng, D., Ho, A., Nicholas, E., Hirokawa, K.E., Bohn, P., Joines, K.M., Peng, H., Hawrylycz, M.J., Phillips, J.W., Hohmann, J.G., Wohnoutka, P., Gerfen, C.R., Koch, C., Bernard, A., Dang, C., Jones, A.R., Zeng, H.: A mesoscale connectome of the mouse brain. Nature 508, 207–214 (2014)

    Article  Google Scholar 

  10. Amunts, K., Lepage, C., Borgeat, L., Mohlberg, H., Dickscheid, T., Rousseau, M.-É., Bludau, S., Bazin, P.-L., Lewis, L.B., Oros-Peusquens, A.-M., Shah, N.J., Lippert, T., Zilles, K., Evans, A.C.: BigBrain: an ultrahigh-resolution 3D human brain model. Science 340, 1472–1475 (2013)

    Article  Google Scholar 

  11. Mayerich, D., Abbott, L., McCormick, B.: Knife-edge scanning microscopy for imaging and reconstruction of three-dimensional anatomical structures of the mouse brain. J. Microsc. 231, 134–143 (2008)

    Article  MathSciNet  Google Scholar 

  12. Ragan, T., Kadiri, L.R., Venkataraju, K.U., Bahlmann, K., Sutin, J., Taranda, J., Arganda-Carreras, I., Kim, Y., Seung, H.S., Osten, P.: Serial two-photon tomography for automated ex vivo mouse brain imaging. Nat. Methods 9, 255–258 (2012)

    Article  Google Scholar 

  13. Ertürk, A., Becker, K., Jährling, N., Mauch, C.P., Hojer, C.D., Egen, J.G., Hellal, F., Bradke, F., Sheng, M., Dodt, H.-U.: Three-dimensional imaging of solvent-cleared organs using 3DISCO. Nat. Protoc. 7, 1983–1995 (2012)

    Article  Google Scholar 

  14. Chung, K., Wallace, J., Kim, S.-Y., Kalyanasundaram, S., Andalman, A.S., Davidson, T.J., Mirzabekov, J.J., Zalocusky, K.A., Mattis, J., Denisin, A.K., Pak, S., Bernstein, H., Ramakrishnan, C., Grosenick, L., Gradinaru, V., Deisseroth, K.: Structural and molecular interrogation of intact biological systems. Nature 497, 332–337 (2013)

    Article  Google Scholar 

  15. Renier, N., Wu, Z., Simon, D.J., Yang, J., Ariel, P., Tessier-Lavigne, M.: iDISCO: a simple, rapid method to immunolabel large tissue samples for volume imaging. Cell 159, 896–910 (2014)

    Article  Google Scholar 

  16. Susaki, E.A., Tainaka, K., Perrin, D., Kishino, F., Tawara, T., Watanabe, T.M., Yokoyama, C., Onoe, H., Eguchi, M., Yamaguchi, S., Abe, T., Kiyonari, H., Shimizu, Y., Miyawaki, A., Yokota, H., Ueda, H.R.: Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis. Cell 157, 726–739 (2014)

    Article  Google Scholar 

  17. Osechinskiy, S., Kruggel, F.: Quantitative comparison of high-resolution MRI and myelin-stained histology of the human cerebral cortex. In: 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 85–89 (2009)

    Google Scholar 

  18. Bol, K., Haeck, J.C., Alic, L., Niessen, W.J., de Jong, M., Bernsen, M., Veenland, J.F.: Quantification of DCE-MRI: a validation of three techniques with 3D-histology. In: 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), pp. 1044–1047. IEEE (2012)

    Google Scholar 

  19. van Engelen, A., Niessen, W.J., Klein, S., Groen, H.C., Verhagen, H.J.M., Wentzel, J.J., van der Lugt, A., de Bruijne, M.: Supervised in-vivo plaque characterization incorporating class label uncertainty. In: 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), pp. 246–249. IEEE (2012)

    Google Scholar 

  20. Stille, M., Smith, E.J., Crum, W.R., Modo, M.: 3D reconstruction of 2D fluorescence histology images and registration with in vivo MR images: application in a rodent stroke model. J. Neurosci. Methods 219, 27–40 (2013)

    Article  Google Scholar 

  21. Coquery, N., Francois, O., Lemasson, B., Debacker, C., Farion, R., Rémy, C., Barbier, E.L.: Microvascular MRI and unsupervised clustering yields histology-resembling images in two rat models of glioma. J. Cereb. Blood Flow Metab. 34, 1354–1362 (2014)

    Article  Google Scholar 

  22. Goubran, M., Hammond, R.R., de Ribaupierre, S., Burneo, J.G., Mirsattari, S., Steven, D.A., Parrent, A.G., Peters, T.M., Khan, A.R.: Magnetic resonance imaging and histology correlation in the neocortex in temporal lobe epilepsy. Ann. Neurol. 77, 237–250 (2015)

    Article  Google Scholar 

  23. Lindvall, O., Kokaia, Z.: Stem cells for the treatment of neurological disorders. Nature 441, 1094–1096 (2006)

    Article  Google Scholar 

  24. Ross, C.A., Akimov, S.S.: Human-induced pluripotent stem cells: potential for neurodegenerative diseases. Hum. Mol. Genet. 23, R17–R26 (2014)

    Article  Google Scholar 

  25. Palfi, S., Condé, F., Riche, D., Brouillet, E., Dautry, C., Mittoux, V., Chibois, A., Peschanski, M., Hantraye, P.: Fetal striatal allografts reverse cognitive deficits in a primate model of Huntington disease. Nat. Med. 4, 963–966 (1998)

    Article  Google Scholar 

  26. Mu, S., Wang, J., Zhou, G., Peng, W., He, Z., Zhao, Z., Mo, C., Qu, J., Zhang, J.: Transplantation of induced pluripotent stem cells improves functional recovery in Huntington’s disease rat model. PLoS ONE 9, e101185 (2014)

    Article  Google Scholar 

  27. Bachoud-Lévi, A.-C., Rémy, P., Nǵuyen, J.-P., Brugières, P., Lefaucheur, J.-P., Bourdet, C., Baudic, S., Gaura, V., Maison, P., Haddad, B., Boissé, M.-F., Grandmougin, T., Jény, R., Bartolomeo, P., Barba, G.D., Degos, J.-D., Lisovoski, F., Ergis, A.-M., Pailhous, E., Cesaro, P., Hantraye, P., Peschanski, M.: Motor and cognitive improvements in patients with Huntington’s disease after neural transplantation. Lancet 356, 1975–1979 (2000)

    Article  Google Scholar 

  28. Modo, M., Mellodew, K., Cash, D., Fraser, S.E., Meade, T.J., Price, J., Williams, S.C.: Mapping transplanted stem cell migration after a stroke: a serial, in vivo magnetic resonance imaging study. Neuroimage 21, 311–317 (2004)

    Article  Google Scholar 

  29. Guzman, R., Uchida, N., Bliss, T.M., He, D., Christopherson, K.K., Stellwagen, D., Capela, A., Greve, J., Malenka, R.C., Moseley, M.E., Palmer, T.D., Steinberg, G.K.: Long-term monitoring of transplanted human neural stem cells in developmental and pathological contexts with MRI. Proc. Natl. Acad. Sci. U.S.A. 104, 10211–10216 (2007)

    Article  Google Scholar 

  30. Kraitchman, D.L., Gilson, W.D., Lorenz, C.H.: Stem cell therapy: MRI guidance and monitoring. J. Magn. Reson. Imaging 27, 299–310 (2008)

    Article  Google Scholar 

  31. Nicoleau, C., Varela, C., Bonnefond, C., Maury, Y., Bugi, A., Aubry, L., Viegas, P., Bourgois-Rocha, F., Peschanski, M., Perrier, A.L.: Embryonic stem cells neural differentiation qualifies the role of Wnt/β-Catenin signals in human telencephalic specification and regionalization. Stem Cells 31, 1763–1774 (2013)

    Article  Google Scholar 

  32. Dauguet, J., Delzescaux, T., Condé, F., Mangin, J.-F., Ayache, N., Hantraye, P., Frouin, V.: Three-dimensional reconstruction of stained histological slices and 3D non-linear registration with in-vivo MRI for whole baboon brain. J. Neurosci. Methods 164, 191–204 (2007)

    Article  Google Scholar 

  33. Ourselin, S., Roche, A., Prima, S., Ayache, N.: Block matching: a general framework to improve robustness of rigid registration of medical images. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 557–566. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  34. Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L., Leach, M.O., Hawkes, D.J.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans. Med. Imaging 18, 712–721 (1999)

    Article  Google Scholar 

  35. Mattes, D., Haynor, D.R., Vesselle, H., Lewellen, T.K., Eubank, W.: PET-CT image registration in the chest using free-form deformations. IEEE Trans. Med. Imaging 22, 120–128 (2003)

    Article  Google Scholar 

  36. Golland, P., Fischl, B.: Permutation tests for classification: towards statistical significance in image-based studies. Inf. Process. Med. Imaging. 18, 330–341 (2003)

    Article  Google Scholar 

  37. Ojala, M., Garriga, G.C.: Permutation tests for studying classifier performance. In: 2009 Ninth IEEE International Conference on Data Mining, pp. 908–913. IEEE (2009)

    Google Scholar 

  38. Bakker, R., Tiesinga, P., Kötter, R.: The scalable brain atlas: instant web-based access to public brain atlases and related content, pp. 353–366 (2013). arXiv Preprint: arXiv1312.6310

    Google Scholar 

Download references

Acknowledgements

This study was partially supported by the French National Agency for Research (ANR-2010-RFCS-003 “HD-SCT”) and by the Laboratoire d’Excellence Revive (Investissement d’Avenir; ANR-10-LABX-73). We thank Martine Guillermier, Susannah Williams, Aurore Bugi and Nicolas Souedet for their contribution to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Delzescaux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Balbastre, Y. et al. (2016). A Quantitative Approach to Characterize MR Contrasts with Histology. In: Crimi, A., Menze, B., Maier, O., Reyes, M., Handels, H. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2015. Lecture Notes in Computer Science(), vol 9556. Springer, Cham. https://doi.org/10.1007/978-3-319-30858-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30858-6_10

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30857-9

  • Online ISBN: 978-3-319-30858-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics