Abstract
Recently, Relevance-Based Language Models have been demonstrated as an effective Collaborative Filtering approach. Nevertheless, this family of Pseudo-Relevance Feedback techniques is computationally expensive for applying them to web-scale data. Also, they require the use of smoothing methods which need to be tuned. These facts lead us to study other similar techniques with better trade-offs between effectiveness and efficiency. Specifically, in this paper, we analyse the applicability to the recommendation task of four well-known query expansion techniques with multiple probability estimates. Moreover, we analyse the effect of neighbourhood length and devise a new probability estimate that takes into account this property yielding better recommendation rankings. Finally, we find that the proposed algorithms are dramatically faster than those based on Relevance-Based Language Models, they do not have any parameter to tune (apart from the ones of the neighbourhood) and they provide a better trade-off between accuracy and diversity/novelty.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Belkin, N.J., Croft, W.B.: Information filtering and information retrieval: two sides of the same coin? Commun. ACM 35(12), 29–38 (1992)
Bellogín, A., Castells, P., Cantador, I.: Precision-oriented evaluation of recommender systems. In: RecSys 2011, p. 333. ACM (2011)
Bellogín, A., Parapar, J.: Using graph partitioning techniques for neighbour selection in user-based collaborative filtering. In: RecSys 2012, pp. 213–216. ACM (2012)
Bellogín, A., Parapar, J., Castells, P.: Probabilistic collaborative filtering with negative cross entropy. In: RecSys 2013, pp. 387–390. ACM (2013)
Bellogín, A., Wang, J., Castells, P.: Bridging memory-based collaborative filtering and text retrieval. Inf. Retr. 16(6), 697–724 (2013)
Carpineto, C., de Mori, R., Romano, G., Bigi, B.: An information-theoretic approach to automatic query expansion. ACM Trans. Inf. Syst. 19(1), 1–27 (2001)
Coggeshall, F.: The arithmetic, geometric, and harmonic means. Q. J. Econ. 1(1), 83–86 (1886)
Desrosiers, C., Karypis, G.: A comprehensive survey of neighborhood-based recommendation methods. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 107–144. Springer, Heidelberg (2011)
Fleder, D., Hosanagar, K.: Blockbuster culture’s next rise or fall: the impact of recommender systems on sales diversity. Manage. Sci. 55(5), 697–712 (2009)
Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. 22(1), 5–53 (2004)
Koren, Y., Bell, R.: Advances in collaborative filtering. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 145–186. Springer, Heidelberg (2011)
Lavrenko, V., Croft, W.B.: Relevance-based language models. In: SIGIR 2001, pp. 120–127. ACM (2001)
McLaughlin, M.R., Herlocker, J.L.: A collaborative filtering algorithm and evaluation metric that accurately model the user experience. In: SIGIR 2004, pp. 329–336. ACM (2004)
Parapar, J., Bellogín, A., Castells, P., Barreiro, A.: Relevance-based language modelling for recommender systems. Inf. Process. Manage. 49(4), 966–980 (2013)
Robertson, S.E.: On term selection for query expansion. J. Doc. 46(4), 359–364 (1990)
Rocchio, J.J.: Relevance feedback in information retrieval. In: Salton, G. (ed.) The SMART Retrieval System - Experiments in Automatic Document Processing, pp. 313–323. Prentice Hall (1971)
Schafer, J.B., Frankowski, D., Herlocker, J., Sen, S.: Collaborative filtering recommender systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 291–324. Springer, Heidelberg (2007)
Valcarce, D., Parapar, J., Barreiro, A.: A study of smoothing methods for relevance-based language modelling of recommender systems. In: Hanbury, A., Kazai, G., Rauber, A., Fuhr, N. (eds.) ECIR 2015. LNCS, vol. 9022, pp. 346–351. Springer, Heidelberg (2015)
Wang, J.: Language models of collaborative filtering. In: Lee, G.G., Song, D., Lin, C.-Y., Aizawa, A., Kuriyama, K., Yoshioka, M., Sakai, T. (eds.) AIRS 2009. LNCS, vol. 5839, pp. 218–229. Springer, Heidelberg (2009)
Wang, J., de Vries, A.P., Reinders, M.J.T.: A user-item relevance model for log-based collaborative filtering. In: Lalmas, M., MacFarlane, A., Rüger, S.M., Tombros, A., Tsikrika, T., Yavlinsky, A. (eds.) ECIR 2006. LNCS, vol. 3936, pp. 37–48. Springer, Heidelberg (2006)
Wang, J., de Vries, A.P., Reinders, M.J.T.: Unified relevance models for rating prediction in collaborative filtering. ACM Trans. Inf. Syst. 26(3), 1–42 (2008)
Wang, Y., Wang, L., Li, Y., He, D., Chen, W., Liu, T.-Y.: A theoretical analysis of NDCG ranking measures. In: COLT 2013, pp. 1–30 (2013). JMLR.org
Wong, W.S., Luk, R.W.P., Leong, H.V., Ho, L.K., Lee, D.L.: Re-examining the effects of adding relevance information in a relevance feedback environment. Inf. Process. Manage. 44(3), 1086–1116 (2008)
Zhai, C., Lafferty, J.: Model-based feedback in the language modeling approach to information retrieval. In: CIKM 2001, pp. 403–410. ACM (2001)
Zhou, T., Kuscsik, Z., Liu, J.-G., Medo, M., Wakeling, J.R., Zhang, Y.-C.: Solving the apparent diversity-accuracy dilemma of recommender systems. PNAS 107(10), 4511–4515 (2010)
Acknowledgments
This work was supported by the Ministerio de Economía y Competitividad of the Government of Spain under grants TIN2012-33867 and TIN2015-64282-R. The first author also wants to acknowledge the support of Ministerio de Educación, Cultura y Deporte of the Government of Spain under the grant FPU014/01724.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Valcarce, D., Parapar, J., Barreiro, Á. (2016). Efficient Pseudo-Relevance Feedback Methods for Collaborative Filtering Recommendation. In: Ferro, N., et al. Advances in Information Retrieval. ECIR 2016. Lecture Notes in Computer Science(), vol 9626. Springer, Cham. https://doi.org/10.1007/978-3-319-30671-1_44
Download citation
DOI: https://doi.org/10.1007/978-3-319-30671-1_44
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-30670-4
Online ISBN: 978-3-319-30671-1
eBook Packages: Computer ScienceComputer Science (R0)