iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-319-30671-1_44
Efficient Pseudo-Relevance Feedback Methods for Collaborative Filtering Recommendation | SpringerLink
Skip to main content

Efficient Pseudo-Relevance Feedback Methods for Collaborative Filtering Recommendation

  • Conference paper
Advances in Information Retrieval (ECIR 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9626))

Included in the following conference series:

Abstract

Recently, Relevance-Based Language Models have been demonstrated as an effective Collaborative Filtering approach. Nevertheless, this family of Pseudo-Relevance Feedback techniques is computationally expensive for applying them to web-scale data. Also, they require the use of smoothing methods which need to be tuned. These facts lead us to study other similar techniques with better trade-offs between effectiveness and efficiency. Specifically, in this paper, we analyse the applicability to the recommendation task of four well-known query expansion techniques with multiple probability estimates. Moreover, we analyse the effect of neighbourhood length and devise a new probability estimate that takes into account this property yielding better recommendation rankings. Finally, we find that the proposed algorithms are dramatically faster than those based on Relevance-Based Language Models, they do not have any parameter to tune (apart from the ones of the neighbourhood) and they provide a better trade-off between accuracy and diversity/novelty.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://grouplens.org/datasets/movielens/.

  2. 2.

    http://webscope.sandbox.yahoo.com.

  3. 3.

    http://www.macle.nl/tud/LT/.

References

  1. Belkin, N.J., Croft, W.B.: Information filtering and information retrieval: two sides of the same coin? Commun. ACM 35(12), 29–38 (1992)

    Article  Google Scholar 

  2. Bellogín, A., Castells, P., Cantador, I.: Precision-oriented evaluation of recommender systems. In: RecSys 2011, p. 333. ACM (2011)

    Google Scholar 

  3. Bellogín, A., Parapar, J.: Using graph partitioning techniques for neighbour selection in user-based collaborative filtering. In: RecSys 2012, pp. 213–216. ACM (2012)

    Google Scholar 

  4. Bellogín, A., Parapar, J., Castells, P.: Probabilistic collaborative filtering with negative cross entropy. In: RecSys 2013, pp. 387–390. ACM (2013)

    Google Scholar 

  5. Bellogín, A., Wang, J., Castells, P.: Bridging memory-based collaborative filtering and text retrieval. Inf. Retr. 16(6), 697–724 (2013)

    Article  Google Scholar 

  6. Carpineto, C., de Mori, R., Romano, G., Bigi, B.: An information-theoretic approach to automatic query expansion. ACM Trans. Inf. Syst. 19(1), 1–27 (2001)

    Article  Google Scholar 

  7. Coggeshall, F.: The arithmetic, geometric, and harmonic means. Q. J. Econ. 1(1), 83–86 (1886)

    Article  MathSciNet  Google Scholar 

  8. Desrosiers, C., Karypis, G.: A comprehensive survey of neighborhood-based recommendation methods. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 107–144. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Fleder, D., Hosanagar, K.: Blockbuster culture’s next rise or fall: the impact of recommender systems on sales diversity. Manage. Sci. 55(5), 697–712 (2009)

    Article  Google Scholar 

  10. Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. 22(1), 5–53 (2004)

    Article  Google Scholar 

  11. Koren, Y., Bell, R.: Advances in collaborative filtering. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 145–186. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  12. Lavrenko, V., Croft, W.B.: Relevance-based language models. In: SIGIR 2001, pp. 120–127. ACM (2001)

    Google Scholar 

  13. McLaughlin, M.R., Herlocker, J.L.: A collaborative filtering algorithm and evaluation metric that accurately model the user experience. In: SIGIR 2004, pp. 329–336. ACM (2004)

    Google Scholar 

  14. Parapar, J., Bellogín, A., Castells, P., Barreiro, A.: Relevance-based language modelling for recommender systems. Inf. Process. Manage. 49(4), 966–980 (2013)

    Article  Google Scholar 

  15. Robertson, S.E.: On term selection for query expansion. J. Doc. 46(4), 359–364 (1990)

    Article  Google Scholar 

  16. Rocchio, J.J.: Relevance feedback in information retrieval. In: Salton, G. (ed.) The SMART Retrieval System - Experiments in Automatic Document Processing, pp. 313–323. Prentice Hall (1971)

    Google Scholar 

  17. Schafer, J.B., Frankowski, D., Herlocker, J., Sen, S.: Collaborative filtering recommender systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 291–324. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  18. Valcarce, D., Parapar, J., Barreiro, A.: A study of smoothing methods for relevance-based language modelling of recommender systems. In: Hanbury, A., Kazai, G., Rauber, A., Fuhr, N. (eds.) ECIR 2015. LNCS, vol. 9022, pp. 346–351. Springer, Heidelberg (2015)

    Google Scholar 

  19. Wang, J.: Language models of collaborative filtering. In: Lee, G.G., Song, D., Lin, C.-Y., Aizawa, A., Kuriyama, K., Yoshioka, M., Sakai, T. (eds.) AIRS 2009. LNCS, vol. 5839, pp. 218–229. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  20. Wang, J., de Vries, A.P., Reinders, M.J.T.: A user-item relevance model for log-based collaborative filtering. In: Lalmas, M., MacFarlane, A., Rüger, S.M., Tombros, A., Tsikrika, T., Yavlinsky, A. (eds.) ECIR 2006. LNCS, vol. 3936, pp. 37–48. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  21. Wang, J., de Vries, A.P., Reinders, M.J.T.: Unified relevance models for rating prediction in collaborative filtering. ACM Trans. Inf. Syst. 26(3), 1–42 (2008)

    Article  Google Scholar 

  22. Wang, Y., Wang, L., Li, Y., He, D., Chen, W., Liu, T.-Y.: A theoretical analysis of NDCG ranking measures. In: COLT 2013, pp. 1–30 (2013). JMLR.org

  23. Wong, W.S., Luk, R.W.P., Leong, H.V., Ho, L.K., Lee, D.L.: Re-examining the effects of adding relevance information in a relevance feedback environment. Inf. Process. Manage. 44(3), 1086–1116 (2008)

    Article  Google Scholar 

  24. Zhai, C., Lafferty, J.: Model-based feedback in the language modeling approach to information retrieval. In: CIKM 2001, pp. 403–410. ACM (2001)

    Google Scholar 

  25. Zhou, T., Kuscsik, Z., Liu, J.-G., Medo, M., Wakeling, J.R., Zhang, Y.-C.: Solving the apparent diversity-accuracy dilemma of recommender systems. PNAS 107(10), 4511–4515 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministerio de Economía y Competitividad of the Government of Spain under grants TIN2012-33867 and TIN2015-64282-R. The first author also wants to acknowledge the support of Ministerio de Educación, Cultura y Deporte of the Government of Spain under the grant FPU014/01724.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Valcarce .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Valcarce, D., Parapar, J., Barreiro, Á. (2016). Efficient Pseudo-Relevance Feedback Methods for Collaborative Filtering Recommendation. In: Ferro, N., et al. Advances in Information Retrieval. ECIR 2016. Lecture Notes in Computer Science(), vol 9626. Springer, Cham. https://doi.org/10.1007/978-3-319-30671-1_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30671-1_44

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30670-4

  • Online ISBN: 978-3-319-30671-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics