Abstract
This paper proposes a range of probabilistic models of local expertise based on geo-tagged social network streams. We assume that frequent visits result in greater familiarity with the location in question. To capture this notion, we rely on spatio-temporal information from users’ online check-in profiles. We evaluate the proposed models on a large-scale sample of geo-tagged and manually annotated Twitter streams. Our experiments show that the proposed methods outperform both intuitive baselines as well as established models such as the iterative inference scheme.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Balog, K., Fang, Y., de Rijke, M., Serdyukov, P., Si, L.: Expertise retrieval. Found. Trends Inf. Retrieval 6(2–3), 127–256 (2012)
Bao, J., Zheng, Y., Mokbel, M.F.: Location-based and preference-aware recommendation using sparse geo-social networking data. In: Proceedings of the 20th International Conference on Advances in Geographic Information Systems - SIGSPATIAL 2012, pp. 199–208 (2012)
Bar-Haim, R., Dinur, E., Feldman, R., Fresko, M., Goldstein, G.: Identifying and following expert investors in stock microblogs. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing - EMNLP 2011, pp. 1310–1319 (2011)
Campbell, C.S., Maglio, P.P., Cozzi, A., Dom, B.: Expertise identification using email communications. In: Proceedings of the 12th International Conference on Information and Knowledge Management - CIKM 2003, pp. 528–531 (2003)
Cheng, Z., Caverlee, J., Barthwal, H., Bachani, V.: Who is the barbecue king of Texas? In: Proceedings of the 37th International ACM SIGIR Conference on Research and Development in Information Retrieval - SIGIR 2014, pp. 335–344 (2014)
Fang, H., Zhai, C.X.: Probabilistic models for expert finding. In: Amati, G., Carpineto, C., Romano, G. (eds.) ECiR 2007. LNCS, vol. 4425, pp. 418–430. Springer, Heidelberg (2007)
Fang, Y., Si, L., Mathur, A.P.: Discriminative models of integrating document evidence and document-candidate associations for expert search. In: Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval - SIGIR 2010, p. 683 (2010)
Fleiss, J.L.: Measuring nominal scale agreement among many raters. Psychol. Bull. 76(5), 378–382 (1971)
Horowitz, D., Kamvar, S.D.: The anatomy of a large-scale social search engine. In: Proceedings of the 19th International Conference on World Wide Web - WWW 2010, pp. 431–440 (2010)
Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM 46(5), 604–632 (1999)
Li, W., Eickhoff, C., de Vries, A.P.: Geo-spatial domain expertise in microblogs. In: de Rijke, M., Kenter, T., de Vries, A.P., Zhai, C.X., de Jong, F., Radinsky, K., Hofmann, K. (eds.) ECIR 2014. LNCS, vol. 8416, pp. 487–492. Springer, Heidelberg (2014)
Li, W., Serdyukov, P., de Vries, A.P., Eickhoff, C., Larson, M.: The where in the tweet. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management - CIKM 2011, pp. 2473–2476 (2011)
Liu, X., Croft, W.B., Koll, M.: Finding experts in community-based question-answering services. In: Proceedings of the 14th ACM International Conference on Information and Knowledge Management - CIKM 2005, pp. 315–316 (2005)
Loftus, G.R.: Evaluating forgetting curves. J. Exp. Psychol. Learn. Mem. Cogn. 11(2), 397–406 (1985)
Wagner, C., Liao, V., Pirolli, P., Nelson, L., Strohmaier, M.: It’s not in their tweets: modeling topical expertise of twitter users. In: SocialCom/PASSAT 2012, pp. 91–100 (2012)
Whiting, S., Zhou, K., Jose, J., Alonso, O., Leelanupab, T.: CrowdTiles: presenting crowd-based information for event-driven information needs. In: Proceedings of the 21st ACM International Conference on Information and Knowledge Management - CIKM 2012, pp. 2698–2700 (2012)
Yimam-Seid, D., Kobsa, A.: Expert-finding systems for organizations: problem and domain analysis and the DEMOIR approach. J. Organ. Comput. Electron. Commer. 13(1), 1–24 (2003)
Zhang, J., Ackerman, M.S., Adamic, L.: Expertise networks in online communities: structure and algorithms. In: Proceedings of the 16th International Conference on World Wide Web - WWW 2007, pp. 221–230 (2007)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Li, W., Eickhoff, C., de Vries, A.P. (2016). Probabilistic Local Expert Retrieval. In: Ferro, N., et al. Advances in Information Retrieval. ECIR 2016. Lecture Notes in Computer Science(), vol 9626. Springer, Cham. https://doi.org/10.1007/978-3-319-30671-1_17
Download citation
DOI: https://doi.org/10.1007/978-3-319-30671-1_17
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-30670-4
Online ISBN: 978-3-319-30671-1
eBook Packages: Computer ScienceComputer Science (R0)