iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-319-30671-1_17
Probabilistic Local Expert Retrieval | SpringerLink
Skip to main content

Probabilistic Local Expert Retrieval

  • Conference paper
Advances in Information Retrieval (ECIR 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9626))

Included in the following conference series:

Abstract

This paper proposes a range of probabilistic models of local expertise based on geo-tagged social network streams. We assume that frequent visits result in greater familiarity with the location in question. To capture this notion, we rely on spatio-temporal information from users’ online check-in profiles. We evaluate the proposed models on a large-scale sample of geo-tagged and manually annotated Twitter streams. Our experiments show that the proposed methods outperform both intuitive baselines as well as established models such as the iterative inference scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Balog, K., Fang, Y., de Rijke, M., Serdyukov, P., Si, L.: Expertise retrieval. Found. Trends Inf. Retrieval 6(2–3), 127–256 (2012)

    Article  Google Scholar 

  2. Bao, J., Zheng, Y., Mokbel, M.F.: Location-based and preference-aware recommendation using sparse geo-social networking data. In: Proceedings of the 20th International Conference on Advances in Geographic Information Systems - SIGSPATIAL 2012, pp. 199–208 (2012)

    Google Scholar 

  3. Bar-Haim, R., Dinur, E., Feldman, R., Fresko, M., Goldstein, G.: Identifying and following expert investors in stock microblogs. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing - EMNLP 2011, pp. 1310–1319 (2011)

    Google Scholar 

  4. Campbell, C.S., Maglio, P.P., Cozzi, A., Dom, B.: Expertise identification using email communications. In: Proceedings of the 12th International Conference on Information and Knowledge Management - CIKM 2003, pp. 528–531 (2003)

    Google Scholar 

  5. Cheng, Z., Caverlee, J., Barthwal, H., Bachani, V.: Who is the barbecue king of Texas? In: Proceedings of the 37th International ACM SIGIR Conference on Research and Development in Information Retrieval - SIGIR 2014, pp. 335–344 (2014)

    Google Scholar 

  6. Fang, H., Zhai, C.X.: Probabilistic models for expert finding. In: Amati, G., Carpineto, C., Romano, G. (eds.) ECiR 2007. LNCS, vol. 4425, pp. 418–430. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Fang, Y., Si, L., Mathur, A.P.: Discriminative models of integrating document evidence and document-candidate associations for expert search. In: Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval - SIGIR 2010, p. 683 (2010)

    Google Scholar 

  8. Fleiss, J.L.: Measuring nominal scale agreement among many raters. Psychol. Bull. 76(5), 378–382 (1971)

    Article  Google Scholar 

  9. Horowitz, D., Kamvar, S.D.: The anatomy of a large-scale social search engine. In: Proceedings of the 19th International Conference on World Wide Web - WWW 2010, pp. 431–440 (2010)

    Google Scholar 

  10. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM 46(5), 604–632 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Li, W., Eickhoff, C., de Vries, A.P.: Geo-spatial domain expertise in microblogs. In: de Rijke, M., Kenter, T., de Vries, A.P., Zhai, C.X., de Jong, F., Radinsky, K., Hofmann, K. (eds.) ECIR 2014. LNCS, vol. 8416, pp. 487–492. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  12. Li, W., Serdyukov, P., de Vries, A.P., Eickhoff, C., Larson, M.: The where in the tweet. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management - CIKM 2011, pp. 2473–2476 (2011)

    Google Scholar 

  13. Liu, X., Croft, W.B., Koll, M.: Finding experts in community-based question-answering services. In: Proceedings of the 14th ACM International Conference on Information and Knowledge Management - CIKM 2005, pp. 315–316 (2005)

    Google Scholar 

  14. Loftus, G.R.: Evaluating forgetting curves. J. Exp. Psychol. Learn. Mem. Cogn. 11(2), 397–406 (1985)

    Article  Google Scholar 

  15. Wagner, C., Liao, V., Pirolli, P., Nelson, L., Strohmaier, M.: It’s not in their tweets: modeling topical expertise of twitter users. In: SocialCom/PASSAT 2012, pp. 91–100 (2012)

    Google Scholar 

  16. Whiting, S., Zhou, K., Jose, J., Alonso, O., Leelanupab, T.: CrowdTiles: presenting crowd-based information for event-driven information needs. In: Proceedings of the 21st ACM International Conference on Information and Knowledge Management - CIKM 2012, pp. 2698–2700 (2012)

    Google Scholar 

  17. Yimam-Seid, D., Kobsa, A.: Expert-finding systems for organizations: problem and domain analysis and the DEMOIR approach. J. Organ. Comput. Electron. Commer. 13(1), 1–24 (2003)

    Google Scholar 

  18. Zhang, J., Ackerman, M.S., Adamic, L.: Expertise networks in online communities: structure and algorithms. In: Proceedings of the 16th International Conference on World Wide Web - WWW 2007, pp. 221–230 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Li, W., Eickhoff, C., de Vries, A.P. (2016). Probabilistic Local Expert Retrieval. In: Ferro, N., et al. Advances in Information Retrieval. ECIR 2016. Lecture Notes in Computer Science(), vol 9626. Springer, Cham. https://doi.org/10.1007/978-3-319-30671-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30671-1_17

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30670-4

  • Online ISBN: 978-3-319-30671-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics