iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-319-29965-5_13
Enhancing Normal-Abnormal Classification Accuracy in Colonoscopy Videos via Temporal Consistency | SpringerLink
Skip to main content

Enhancing Normal-Abnormal Classification Accuracy in Colonoscopy Videos via Temporal Consistency

  • Conference paper
  • First Online:
Computer-Assisted and Robotic Endoscopy (CARE 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9515))

Included in the following conference series:

Abstract

This paper proposes a novel hierarchical approach to improve the accuracy of the classification of normal-vs-abnormal frames in white-light colonoscopy videos. The existing approaches label each frame independently, without considering the temporal consistency between adjacent frames. Temporal consistency, however, can improve the classification accuracy in the presence of unclear/uncertain images. We propose to leverage temporal consistency between adjacent frames for colonoscopy video frame classification using a novel hierarchical classifier. Comparative experiments with five challenging full colonoscopy videos show that the proposed approach considerably improves the mean class normal/abnormal classification accuracy compared to the approaches where the frames are classified independently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cancer research UK. http://info.cancerresearchuk.org/cancerstats

  2. Bressler, B., Paszat, L.F., Chen, Z., Rothwell, D.M., Vinden, C., Rabeneck, L.: Rates of new or missed colorectal cancers after colonoscopy and their risk factors: a population-based analysis. Gastroenterology 132(1), 96–102 (2007)

    Article  Google Scholar 

  3. Lima, C., Barbosa, D., Ramos, A., Tavares, A., Montero, L., Carvalho, L.: Classification of endoscopic capsule images by using color wavelet features, higher order statistics and radial basis functions. In: IEEE EMBS (2008)

    Google Scholar 

  4. Manivannan, S., Wang, R., Trucco, E.: Extended gaussian-filtered local binary patterns for colonoscopy image classification. In: IEEE ICCV Workshops (2013)

    Google Scholar 

  5. Manivannan, S., Wang, R., Trucco, E., Hood, A.: Automatic normal-abnormal video frame classification for colonoscopy. In: IEEE ISBI (2013)

    Google Scholar 

  6. Engelhardt, S., Ameling, S., Paulus, D., Wirth, S.: Features for classification of polyps in colonoscopy. In: CEUR Workshop Proceedings (2010)

    Google Scholar 

  7. Karkanis, S.A., Iakovvidis, D.K., Maroulis, D.E., Karras, D.A., Tzivras, M.: Computer aided tumor detection in endoscopic video using color wavelet features. IEEE Trans. IT Biomed. 7, 141–152 (2003)

    Article  Google Scholar 

  8. Maroulis, D.E., Iakovidis, D.K., Karkanis, S.A., Karras, D.A.: Cold: a versatile detection system for colorectal lesions in endoscopy video-frames. Comput. Methods Programs Biomed. 70, 151–166 (2003)

    Article  Google Scholar 

  9. Cui, L., Hu, C., Zou, Y., Meng, M.Q.H.: Bleeding detection in wireless capsule endoscopy images by support vector classifier, IEEE International Conference on Information and Automation (2010)

    Google Scholar 

  10. Tjoa, M.P., Krishnan, S.: Feature extraction for the analysis of colon status from the endoscopic images. Biomed. Eng. Online 2, 3–17 (2003)

    Article  Google Scholar 

  11. Kumar, R., Zhao, Q., Seshamani, S., Mullin, G., Hanger, G., Dassopoulos, T.: Assessment of crohn’s disease lesions in wireless capsule endoscopy images. Biomed. Eng. Online 59, 355–362 (2012)

    Google Scholar 

  12. Liedlgruber, M., Uhl, A.: Computer-aided decision support systems for endoscopy in the gastrointestinal tract: a review. IEEE Rev. Biomed. Eng. 4, 73–88 (2011)

    Article  Google Scholar 

  13. Ben-Hur, A., Weston, J.: A user’s guide to support vector machines. In: Data Mining Techniques for the Life Sciences. Methods in Molecular Biology, vol. 609, pp. 223–239. Humana Press (2010)

    Google Scholar 

  14. Lin, H.T., Lin, C.J., Weng, R.: A note on platt’s probabilistic outputs for support vector machines. Mach. Learn. 68(3), 267–276 (2007)

    Article  Google Scholar 

  15. Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  16. Wang, J., Yang, J., Yu, K., Lv, F., Huang, T., Gong, Y.: Locality-constrained linear coding for image classification. In: IEEE CVPR (2010)

    Google Scholar 

  17. Manivannan, S., Li, W., Akbar, S., Wang, R., Zhang, J., McKenna, S.J.: HEp-2 cell classification using multi-resolution local patterns and ensemble SVMs. In: I3A 1st Workshop on Pattern Recognition Techniques for Indirect Immunoflurescence Images, ICPR (2014)

    Google Scholar 

  18. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: LIBLINEAR: a library for large linear classification. J. Mach. Learn. Res. 9, 1871–1874 (2008)

    MATH  Google Scholar 

  19. Vedaldi, A., Fulkerson, B.: VLFeat: an open and portable library of computer vision algorithms (2008). http://www.vlfeat.org/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo A. Puerto-Souza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Puerto-Souza, G.A., Manivannan, S., Trujillo, M.P., Hoyos, J.A., Trucco, E., Mariottini, GL. (2016). Enhancing Normal-Abnormal Classification Accuracy in Colonoscopy Videos via Temporal Consistency. In: Luo, X., Reichl, T., Reiter, A., Mariottini, GL. (eds) Computer-Assisted and Robotic Endoscopy. CARE 2015. Lecture Notes in Computer Science(), vol 9515. Springer, Cham. https://doi.org/10.1007/978-3-319-29965-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29965-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29964-8

  • Online ISBN: 978-3-319-29965-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics