Abstract
We consider the ranking problem of learning a ranking function from the data set of objects each of which is endowed with an attribute vector and a ranking label chosen from the ordered set of labels. We propose two different formulations: primal problem, primal problem with dual representation of normal vector, and then propose to apply the kernel technique to the latter formulation. We also propose algorithms based on the row and column generation in order to mitigate the computational burden due to the large number of objects.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)
Crammer, K., Singer, Y.: Pranking with ranking. In: Dietterich, T.G., Becker, S., Ghahramani, Z. (eds.) Advances in Neural Information Processing Systems 14, pp. 641–647. MIT Press, Cambridge (2002)
Herbrich, R., Graepel, T., Obermayer, K.: Large margin rank boundaries for ordinal regression. In: Smola, A.J., Bartlette, P., Schölkopt, B., Schuurmans, D. (eds.) Advances in Large Margin Classifiers, pp. 115–132. MIT Press, Cambridge (2000)
Liu, T.-Y.: Learning to Rank for Information Retrieval. Springer, Heidelberg (2011)
Shashua, A., Levin, A.: Ranking with large margin principles: two approaches. In: Adv. Neural Inf. Process. Syst. 15 (NIPS 2002), 937–944 (2003)
Schölkopf, B., Herbrich, R., Smola, A.J.: A generalized representer theorem. In: Helmbold, D., Williamson, B. (eds.) Computational Learning Theory, Lecture Notes in Computer Science, vol. 2111, pp. 416–426 (2001)
Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)
Tatsumi, K., Hayashida, K., Kawachi, R., Tanino, T.: Multiobjective multiclass support vector machines maximizing geometric margins. Pac. J. Optim. 6, 115–140 (2010)
Vapnik, V.N.: Statistical Learning Theory. Wiley, New York (1998)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Izunaga, Y., Sato, K., Tatsumi, K., Yamamoto, Y. (2016). Row and Column Generation Algorithm for Maximization of Minimum Margin for Ranking Problems. In: Lübbecke, M., Koster, A., Letmathe, P., Madlener, R., Peis, B., Walther, G. (eds) Operations Research Proceedings 2014. Operations Research Proceedings. Springer, Cham. https://doi.org/10.1007/978-3-319-28697-6_35
Download citation
DOI: https://doi.org/10.1007/978-3-319-28697-6_35
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-28695-2
Online ISBN: 978-3-319-28697-6
eBook Packages: Business and ManagementBusiness and Management (R0)