iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-319-27707-3_13
Template Scoring Methods for Protein Torsion Angle Prediction | SpringerLink
Skip to main content

Template Scoring Methods for Protein Torsion Angle Prediction

  • Conference paper
  • First Online:
Biomedical Engineering Systems and Technologies (BIOSTEC 2015)

Abstract

Prediction of backbone torsion angles provides important constraints about the 3D structure of a protein and is receiving a growing interest in the structure prediction community. In this paper, we introduce a three-stage machine learning classifier to predict the 7-state torsion angles of a protein. The first two stages employ dynamic Bayesian and neural networks to produce an ab-initio prediction of torsion angle states starting from sequence profiles. The third stage is a committee classifier, which combines the ab-initio prediction with a structural frequency profile derived from templates obtained by HHsearch. We develop several structural profile models and obtain significant improvements over the Laplacian scoring technique through: (1) scaling templates by integer powers of sequence identity score, (2) incorporating other alignment scores as multiplicative factors (3) adjusting or optimizing parameters of the profile models with respect to the similarity interval of the target. We also demonstrate that the torsion angle prediction accuracy improves at all levels of target-template similarity even when templates are distant from the target. The improvement is at significantly higher rates as template structures gradually get closer to target.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J.: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997)

    Article  Google Scholar 

  2. Aydin, Z., Singh, A., Bilmes, J., Noble, W.S.: Learning sparse models for a dynamic Bayesian network classifier of protein secondary structure. BMC Bioinform. 12, 154 (2011)

    Article  Google Scholar 

  3. Aydin, Z., Thompson, J., Bilmes, J., Baker, D., Noble, W. S.: Protein torsion angle class prediction by a hybrid architecture of bayesian and neural networks. In: 13th International Conference on Bioinformatics and Computational Biology (2012)

    Google Scholar 

  4. Berjanskii, M.V., Neal, S., Wishart, D.S.: PREDITOR: a web server for predicting protein torsion angle restraints. Nucleic Acids Res. 34, W63–W69 (2006). (Web Server Issue)

    Article  Google Scholar 

  5. Blum, B., Jordan, M., Kim, D., Das, R., Bradley, P., Baker, D.: Feature selection methods for improving protein structure prediction with Rosetta. In: Platt, J., Koller, D., Singer, Y., Roweis, S. (eds.) Advances in Neural Information Processing Systems 20, pp. 137–144. MIT Press, Cambridge (2008)

    Google Scholar 

  6. Cheng, J., Tegge, A.N., Baldi, P.: Machine learning methods for protein structure prediction. IEEE Rev. Biomed. Eng. 1, 41–49 (2008)

    Article  Google Scholar 

  7. Cong, P., Li, D., Wang, Z., Tang, S., Li, T.: Spssm8: an accurate approach for predicting eight-state secondary structures of proteins. Biochimie 95(12), 2460–2464 (2013)

    Article  Google Scholar 

  8. Faraggi, E., Zhang, T., Yang, Y., Kurgan, L., Zhou, Y.: SPINE X: improving protein secondary structure prediction by multistep learning coupled with prediction of solvent accessible surface area and backbone torsion angles. PLoS One 7(2), e30361 (2012)

    Article  Google Scholar 

  9. Henikoff, S., Henikoff, J.G.: Position-based sequence weights. J. Mol. Biol. 243, 574–578 (1994)

    Article  Google Scholar 

  10. Hobohm, U., Sander, C.: Enlarged representative set of protein structures. Protein Sci. 3, 522–524 (1994)

    Article  Google Scholar 

  11. Jones, D.T.: Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol. 292, 195–202 (1999)

    Article  Google Scholar 

  12. Li, D., Li, T., Cong, P., Xong, W., Sun, J.: A novel structural position-specific scoring matrix for the prediction of protein secondary structures. Bioinformatics 28(1), 32–39 (2012)

    Article  Google Scholar 

  13. Mooney, C., Pollastri, G.: Beyond the twilight zone: automated prediction of structural properties of proteins by recursive neural networks and remote homology information. Proteins Struct. Funct. Bioinform. 77, 181–190 (2009)

    Article  Google Scholar 

  14. Pollastri, G., Martin, A.J.M., Mooney, C., Vullo, A.: Accurate prediction of protein secondary structure and solvent accessibility by consensus combiners of sequence and structure information. BMC Bioinform. 8, 201 (2007)

    Article  Google Scholar 

  15. Rangwala, H., Karypis, G.: Introduction to Protein Structure Prediction: Methods and Algorithms. Wiley, Hoboken (2011)

    Google Scholar 

  16. Remmert, M., Biegert, A., Hauser, A., Soding, J.: Hhblits: lightning-fast iterative protein sequence searching by hmm-hmm alignment. Nat. Meth. 9(2), 173–175 (2011)

    Article  Google Scholar 

  17. Shen, Y., Delaglio, F., Cornilescu, G., Bax, A.: TALOS+: a hybrid method for predicting protein backbone torsion angles from nmr chemical shifts. J. Biomol. NMR 44(4), 213–223 (2009)

    Article  Google Scholar 

  18. Singh, H., Singh, S., Raghava, G.P.S.: Evaluation of protein dihedral angle prediction methods. PLoS One 9(8), e105667 (2014)

    Article  Google Scholar 

  19. Soding, J.: Protein homology detection by HMM-HMM comparison. Bioinformatics 21, 951–960 (2005)

    Article  Google Scholar 

  20. Soding, J.: Quick guide to HHsearch (2006). ftp://toolkit.genzentrum.lmu.de/pub/HHsearch/old/HHsearch/HHsearch1.5.1/HHsearch-guide.pdf

  21. Soding, J., Remmert, M., Hauser, A.: HH-suite for sensitive sequence searching based on HMM-HMM alignment (2012). ftp://toolkit.genzentrum.lmu.de/pub/HH-suite/hhsuite-userguide.pdf

  22. Song, J., Tan, H., Wang, M., Webb, G.I., Akutsu, T.: TANGLE: two-level support vector regression approach for protein backbone torsion angle prediction from primary sequences. PLoS One 7(2), e30361 (2012)

    Article  Google Scholar 

  23. Sun, J., Tang, S., Xiong, W., Cong, P., Li, T.: Dsp: a protein shape string and its profile prediction server. Nucleic Acids Res. 40(W1), W298–W302 (2012)

    Article  Google Scholar 

  24. Walsh, I., Bau, D., Martin, A.J.M., Mooney, C., Vullo, A., Pollastri, G.: Ab initio and template-based prediction of multi-class distance maps by two-dimensional recursive neural networks. BMC Struct. Biol. 9, 5 (2009)

    Article  Google Scholar 

  25. Wang, G., Dunbrack Jr., R.L.: PISCES: a protein sequence culling server. Bioinformatics 19, 1589–1591 (2003). http://dunbrack.fccc.edu/PISCES.php

    Article  Google Scholar 

  26. Wang, G., Dunbrack Jr., R.L.: PISCES: recent improvements to a pdb sequence culling server. Nucleic Acids Res. 33, W94–W98 (2005)

    Article  Google Scholar 

  27. Wu, S., Zhang, Y.: ANGLOR: A composite machine-learning algorithm for protein backbone torsion angle prediction. PLoS One 3(10), e3400 (2008)

    Article  Google Scholar 

  28. Wu, S., Zhang, Y.: MUSTER: improving protein sequence profile-profile alignments by using multiple sources of structure information. Proteins Struct. Funct. Bioinform. 72(2), 547–556 (2008)

    Article  Google Scholar 

  29. Zemla, A., Venclovas, C., Fidelis, K., Rost, B.: A modified definition of Sov, a segment-based measure for protein secondary structure prediction assessment. Proteins 34, 220–223 (1999)

    Article  Google Scholar 

  30. Zhou, Y., Duan, Y., Yang, Y., Faraggi, E., Lei, H.: Trends in template/fragment-free protein structure prediction. Theo. Chem. Acc. 128, 3–16 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zafer Aydin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Aydin, Z., Baker, D., Noble, W.S. (2015). Template Scoring Methods for Protein Torsion Angle Prediction. In: Fred, A., Gamboa, H., Elias, D. (eds) Biomedical Engineering Systems and Technologies. BIOSTEC 2015. Communications in Computer and Information Science, vol 574. Springer, Cham. https://doi.org/10.1007/978-3-319-27707-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27707-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27706-6

  • Online ISBN: 978-3-319-27707-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics