Abstract
Over the years, our research group has designed and developed many self-adaptive multi-agent systems to tackle real-world complex problems, such as robot control and heat engine optimization. A recurrent key feature of these systems is the ability to learn how to handle the context they are plunged in, in other words to map the current state of their perceptions to actions and effects. This paper presents the pattern enabling the dynamic and interactive learning of the mapping between context and actions by our multi-agent systems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ross Ashby, W.: An Introduction to Cybernetics. Chapman & Hall, London (1956)
Bazire, M., Brézillon, P.: Understanding context before using it. In: Dey, A.K., Leake, D.B., Kokinov, B., Turner, R. (eds.) CONTEXT 2005. LNCS (LNAI), vol. 3554, pp. 29–40. Springer, Heidelberg (2005)
Boes, J., Migeon, F., Glize, P., Salvy, E.: Model-free optimization of an engine control unit thanks to self-adaptive multi-agent systems. In: ERTS2, Toulouse, SIA/3AF/SEE, pp. 350–359 (2014)
Bonjean, N., Mefteh, W., Gleizes, M.-P., Maurel, C., Migeon, F.: Adelfe 2.0. In: Cossentino, M., Hilaire, V., Molesini, A., Seidita, V. (eds.) Handbook on Agent-Oriented Design Processes, pp. 19–63. Springer, Heidelberg (2014)
Brézillon, P.: Context in problem solving: a survey. Knowl. Eng. Rev. 14(01), 47–80 (1999)
Capera, D., Georgé, J.-P., Gleizes, M.-P., Glize, P.: The amas theory for complex problem solving based on self-organizing cooperative agents. In: Proceedings of the Twelfth IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises, WET ICE 2003, pp. 383–388 (2003)
Chaput, H.H., Kuipers, B., Miikkulainen, R.: Constructivist learning: a neural implementation of the schema mechanism. In: Proceedings of the Workshop on Self-Organizing Maps (WSOM 2003) (2003)
Drescher, G.L.: Made-Up Minds: A Constructivist Approach to Artificial Intelligence. MIT Press, Cambridge (1991)
Guivarch, V., Camps, V., Péninou, A.: AMADEUS: an adaptive multi-agent system to learn a user’s recurring actions in ambient systems. Adv. Distrib. Comput. Artif. Intell. J., Special Issue 1(3), 1–10 (2012)
Heylighen, F., Bates, J., Maack, M.N.: Encyclopedia of Library and Information Sciences. Taylor & Francis, London (2008)
Kalenka, S.: Modelling social interaction attitudes in multi-agent systems. Ph.D. thesis, Citeseer (2001)
Mazac, S., Armetta, F., Hassas, S.: On bootstrapping sensori-motor patterns for a constructivist learning system in continuous environments. In: Alife 14: Fourteenth International Conference on the Synthesis and Simulation of Living Systems (2014)
Noel, V., Zambonelli, F.: Engineering emergence in multi-agent systems: following the problem organisation. In: 2014 International Conference on High Performance Computing & Simulation (HPCS), pp. 444–451. IEEE (2014)
Panait, L., Luke, S.: Cooperative multi-agent learning: the state of the art. Auton. Agents Multi-Agent Syst. 11(3), 387–434 (2005)
Perotto, F.S., Vicari, R., Alvares, L.O.: An autonomous intelligent agent architecture based on constructivist AI. In: Bramer, M., Devedzic, V. (eds.) Artificial Intelligence Applications and Innovations. IFIP, vol. 154, pp. 103–115. Springer, New York (2004)
Di Marzo Serugendo, G., Gleizes, M.-P., Karageorgos, A.: Self-organising systems. In: Di Marzo Serugendo, G., Gleizes, M.-P., Karageorgos, A. (eds.) Self-organising Software, pp. 7–32. Springer, Heidelberg (2011)
Verstaevel, N., Régis, C., Gleizes, M.-P., Robert, F.: Principles and experimentations of self-organizing embedded agents allowing learning from demonstration in ambient robotic. Procedia Comput. Sci. 52, 194–201 (2015). The 6th International Conference on Ambient Systems, Networks and Technologies (ANT 2015)
Verstaevel, N., Régis, C., Guivarch, V., Gleizes, M.-P., Robert, F.: Extreme sensitive robotic a context-aware ubiquitous learning. In: ICAART, INSTICC, vol. 1, pp. 242–248 (2015)
Videau, S., Bernon, C., Glize, P., Uribelarrea, J.-L.: Controlling bioprocesses using cooperative self-organizing agents. In: Demazeau, Y., Pĕchoucĕk, M., Corchado, J.M., Bajo Pérez, J. (eds.) Advances on Practical Applications of Agents and Multiagent Systems. AISC, vol. 88, pp. 141–150. Springer, Heidelberg (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Boes, J., Nigon, J., Verstaevel, N., Gleizes, MP., Migeon, F. (2015). The Self-Adaptive Context Learning Pattern: Overview and Proposal. In: Christiansen, H., Stojanovic, I., Papadopoulos, G. (eds) Modeling and Using Context. CONTEXT 2015. Lecture Notes in Computer Science(), vol 9405. Springer, Cham. https://doi.org/10.1007/978-3-319-25591-0_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-25591-0_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-25590-3
Online ISBN: 978-3-319-25591-0
eBook Packages: Computer ScienceComputer Science (R0)