Abstract
In this paper we present a trained diffusion model for image inpainting based on the structural similarity measure. The proposed diffusion model uses several parametrized linear filters and influence functions. Those parameters are learned in a loss based approach, where we first perform a greedy training before conducting a joint training to further improve the inpainting performance. We provide a detailed comparison to state-of-the-art inpainting algorithms based on the TUM-image inpainting database. The experimental results show that the proposed diffusion model is efficient and achieves superior performance. Moreover, we also demonstrate that the proposed method has a texture preserving property, that makes it stand out from previous PDE based methods.
This research was supported by the FWF-START project Bilevel optimization for Computer Vision, No. Y729 and the Vision\(+\) project Integrating visual information with independent knowledge, No. 836630.
Similar content being viewed by others
Notes
- 1.
\( {\mathbf {K}_i^{t}}^\top \phi _i^t(\mathbf {K}_i^t\mathbf {u}_{t-1})\) can be rewritten as \(\mathbf {\overline{k}}_i^t*\phi _i^t(\mathbf {K}_i^t\mathbf {u}_{t-1}) \).
- 2.
Used solver: http://www.cs.toronto.edu/~liam/software.shtml.
References
Bertalmio, M., Vese, L., Sapiro, G., Osher, S.: Simultaneous structure and texture image inpainting. In: proceedings of CVPR, vol. 2, pp. II-707-12 (2003)
Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: Conference on Computer graphics and interactive techniques, pp. 417–424. ACM Press/Addison-Wesley Publishing Co. (2000)
Bugeau, A., Bertalmio, M., Caselles, V., Sapiro, G.: A comprehensive framework for image inpainting. Image Process. 19(10), 2634–2645 (2010)
Cao, F., Gousseau, Y., Masnou, S., Pérez, P.: Geometrically guided exemplar-based inpainting. SIAM J. Img. Sci. 4(4), 1143–1179 (2011)
Caselles, V.: Exemplar-based image inpainting and applications. SIAM News 44(10), 1–3 (2011)
Chan, T.F., Shen, J.: Local inpainting models and TV inpainting. SIAM J. Appl. Math. 62(3), 1019–1043 (2001)
Chan, T.F., Shen, J.: Nontexture inpainting by curvature-driven diffusions. J. Vis. Commun. Image Represent. 12(4), 436–449 (2001)
Chen, Y., Ranftl, R., Pock, T.: A bi-level view of inpainting-based image compression (2014). arXiv preprint arXiv:1401.4112
Chen, Y., Ranftl, R., Pock, T.: Insights into analysis operator learning: from patch-based sparse models to higher order MRFs. Image Process. 23(3), 1060–1072 (2014)
Chen, Y., Yu, W., Pock, T.: On learning optimized reaction diffusion processes for effective image restoration. In: Proceeding of CVPR (2015)
Criminisi, A., Pérez, P., Toyama, K.: Region filling and object removal by exemplar-based image inpainting. Trans. Img. Proc. 13(9), 1200–1212 (2004)
Efros, A., Leung, T.: Texture synthesis by non-parametric sampling. In: proceeding of ICCV, vol. 2, pp. 1033–1038 (1999)
Esedoglu, S., Shen, J.: Digital inpainting based on the Mumford-Shah-Euler image model. Eur. J. Appl. Math. 13(04), 353–370 (2002)
Facciolo, G., Arias, P., Caselles, V., Sapiro, G.: Exemplar-based interpolation of sparsely sampled images. In: Cremers, D., Boykov, Y., Blake, A., Schmidt, F.R. (eds.) EMMCVPR 2009. LNCS, vol. 5681, pp. 331–344. Springer, Heidelberg (2009)
Galić, I., Weickert, J., Welk, M., Bruhn, A., Belyaev, A., Seidel, H.P.: Image compression with anisotropic diffusion. JMIV 31(2–3), 255–269 (2008)
Getreuer, P.: Total variation inpainting using split bregman. Image Process. On Line 2, 147–157 (2012)
Grossauer, H.: A combined PDE and texture synthesis approach to inpainting. In: Pajdla, T., Matas, J.G. (eds.) ECCV 2004. LNCS, vol. 3022, pp. 214–224. Springer, Heidelberg (2004)
Hel-Or, Y., Shaked, D.: A discriminative approach for wavelet denoising. IEEE Trans. Image Process. 17(4), 443–457 (2008)
Herling, J., Broll, W.: Pixmix: A real-time approach to high-quality diminished reality. In: International Symposium on Mixed and Augmented Reality (ISMAR), pp. 141–150. IEEE (2012)
Jain, V., Seung, S.: Natural image denoising with convolutional networks. In: Advances in Neural Information Processing Systems, pp. 769–776 (2009)
Kokaram, A.C., Morris, R.D., Fitzgerald, W.J., Rayner, P.J.: Interpolation of missing data in image sequences. Image Process. 4(11), 1509–1519 (1995)
Komodakis, N., Tziritas, G.: Image completion using efficient belief propagation via priority scheduling and dynamic pruning. Trans. Img. Proc. 16(11), 2649–2661 (2007)
Kong, X., Li, K., Yang, Q., Wenyin, L., Yang, M.H.: A new image quality metric for image auto-denoising. In: Proceeding of ICCV, pp. 2888–2895. IEEE (2013)
Levin, A., Zomet, A., Weiss, Y.: Learning how to inpaint from global image statistics. In: poceeding of ICCV, pp. 305–312 (2003)
Liu, A., Lin, W., Narwaria, M.: Image quality assessment based on gradient similarity. Image Process. 21(4), 1500–1512 (2012)
Liu, D., Sun, X., Wu, F., Li, S., Zhang, Y.Q.: Image compression with edge-based inpainting. Circuits Syst. Video Technol. 17(10), 1273–1287 (2007)
Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale optimization. Math. Program. 45(1–3), 503–528 (1989)
Masnou, S., Morel, J.M.: Level lines based disocclusion. In: Proceeding of ICIP, vol. 3, pp. 259–263 (1998)
Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math. 42(5), 577–685 (1989)
Nikolaidis, N., Pitas, I.: Digital image processing in painting restoration and archiving. In: proceeding of ICCV, vol. 1, pp. 586–589. IEEE (2001)
Peter, P., Weickert, J.: Compressing images with diffusion- and exemplar-based inpainting. In: Aujol, J.-F., Nikolova, M., Papadakis, N. (eds.) SSVM 2015. LNCS, vol. 9087, pp. 154–165. Springer, Heidelberg (2015)
Rehman, A., Wang, Z.: Ssim-based non-local means image denoising. In: proceeding of ICIP, pp. 217–220. IEEE (2011)
Roth, S., Black, M.: Fields of experts: a framework for learning image priors. In: proceeding of CVPR, vol. 2, pp. 860–867 (2005)
Roth, S., Black, M.: Steerable random fields. In: proceeding of ICCV, pp. 1–8 (2007)
Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena 60(1–4), 259–268 (1992)
Schmidt, U., Gao, Q., Roth, S.: A generative perspective on MRFs in low-level vision. In: proceeding of CVPR, pp. 1751–1758. IEEE (2010)
Tiefenbacher, P., Bogischef, V., Merget, D., Rigoll, G.: Subjective and objective evaluation of image inpainting quality. In: proceeding of ICIP. IEEE (2015)
TUM-image inpainting database. http://www.mmk.ei.tum.de/tumiid/
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. Image Process. 13(4), 600–612 (2004)
Xu, Z., Sun, J.: Image inpainting by patch propagation using patch sparsity. Image Process. 19(5), 1153–1165 (2010)
Zhu, S.C., Mumford, D.: Prior learning and gibbs reaction-diffusion. Pattern Anal. Mach. Intell. 19(11), 1236–1250 (1997)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Yu, W., Heber, S., Pock, T. (2015). Learning Reaction-Diffusion Models for Image Inpainting. In: Gall, J., Gehler, P., Leibe, B. (eds) Pattern Recognition. DAGM 2015. Lecture Notes in Computer Science(), vol 9358. Springer, Cham. https://doi.org/10.1007/978-3-319-24947-6_29
Download citation
DOI: https://doi.org/10.1007/978-3-319-24947-6_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-24946-9
Online ISBN: 978-3-319-24947-6
eBook Packages: Computer ScienceComputer Science (R0)