iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-319-22975-1_14
Quantitative Analysis of Concurrent Reversible Computations | SpringerLink
Skip to main content

Quantitative Analysis of Concurrent Reversible Computations

  • Conference paper
  • First Online:
Formal Modeling and Analysis of Timed Systems (FORMATS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9268))

Abstract

Reversible computing is a paradigm of computation that extends the standard forward-only programming to reversible programming, so that programs can be executed both in the standard, forward direction, and backward, going back to past states. In this paper we present novel quantitative stochastic model for concurrent and cooperatsible computations. More precisely, we introduce the class of \(\rho \) -reversible stochastic automata and define a semantics for the synchronization ensuring that this class of models is closed under composition. For this class of automata we give an efficient way of deriving the equilibrium distribution. Moreover, we prove that the equilibrium distribution of the composition of reversible automata can be derived as the product of the equilibrium distributions of each automaton in isolation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bacci, G., Danos, V., Kammar, O.: On the statistical thermodynamics of reversible communicating processes. In: Corradini, A., Klin, B., Cîrstea, C. (eds.) CALCO 2011. LNCS, vol. 6859, pp. 1–18. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  2. Baier, C., Hahn, E.M., Haverkort, B.R., Hermanns, H., Katoen, J.-P.: Model checking for performability. Math. Structures in Comp. Sci. 23(S.I. 04) (2013)

    Google Scholar 

  3. Balsamo, S., Marin, A.: Performance engineering with product-form models: efficient solutions and applications. In: Proc. of ICPE, pp. 437–448 (2011)

    Google Scholar 

  4. Bennett, C.: Logical reversibility of computations. IBM J. Res. Dev. 17(6), 525–532 (1973)

    Article  MATH  Google Scholar 

  5. Bennett, C.: Thermodynamics of computation. Int. J. of Physics 21, 905–940 (1982)

    Article  Google Scholar 

  6. Bernardo, M., Gorrieri, R.: A tutorial on EMPA: A theory of concurrent processes with nondeterminism, priorities, probabilities and time. Theoretical Computer Science 202, 1–54 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bishop, P.G.: Using reversible computing to achieve fail-safety. In: Proc. of 8th Int. Symp. on Soft. Reliability Eng., pp. 182–191 (1997)

    Google Scholar 

  8. Boothe, B.: Efficient algorithms for bidirectional debugging. SIGPLAN Not. 35(5), 299–310 (2000)

    Article  Google Scholar 

  9. Cardelli, L., Laneve, C.: Reversibility in massive concurrent systems. Scientific Annals of Computer Science 21(2), 175–198 (2011)

    MathSciNet  Google Scholar 

  10. Danos, V., Krivine, J.: Reversible communicating systems. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 292–307. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Dubois, M., Annavaram, M., Stenstrom, P.: Parallel Computer Organization and Design. Cambridge Press (2012)

    Google Scholar 

  12. Harrison, P.G.: Turning back time in Markovian process algebra. Theoretical Computer Science 290(3), 1947–1986 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hermanns, H.: Interactive Markov Chains. Springer (2002)

    Google Scholar 

  14. Hermanns, H., Herzog, U., Katoen, J.P.: Process algebra for performance evaluation. Theor. Comput. Sci. 274(1–2), 43–87 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge Press (1996)

    Google Scholar 

  16. Hillston, J., Marin, A., Piazza, C., Rossi, S.: Contextual lumpability. In: Proc. of Valuetools 2013 Conf. ACM Press (2013)

    Google Scholar 

  17. Jefferson, D.R.: Virtual time. ACM Trans. on Programming Languages and Systems 7(3), 404–425 (1985)

    Article  MathSciNet  Google Scholar 

  18. Jefferson, D.R., Reiher, P.: Supercritical speedup. In: Proc. of the 24th Annual Simulation Symp., pp. 159–168 (1991)

    Google Scholar 

  19. Kelly, F.: Reversibility and stochastic networks. Wiley, New York (1979)

    MATH  Google Scholar 

  20. Lanese, I., Lienhardt, M., Mezzina, C.A., Schmitt, A., Stefani, J.-B.: Concurrent flexible reversibility. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 370–390. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  21. Lanese, I., Antares Mezzina, C., Tiezzi, F.: Causal-consistent reversibility. Bulletin of the EATCS 114 (2014)

    Google Scholar 

  22. Lee, J.: Dynamic reverse code generation for backward execution. Elect. notes in Theor. Comp. Sci. 174(4), 37–54 (2007)

    Article  Google Scholar 

  23. Marin, A., Rossi, S.: Autoreversibility: exploiting symmetries in Markov chains. In: Proc. of MASCOTS 2013, pp. 151–160. IEEE Computer Society (2013)

    Google Scholar 

  24. Marin, A., Rossi, S.: On the relations between lumpability and reversibility. In: Proc. of MASCOTS 2014, pp. 427–432 (2014)

    Google Scholar 

  25. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, New York (2000)

    MATH  Google Scholar 

  26. Perumalla, K.S.: Introduction to reversible computing. CRC Press (2013)

    Google Scholar 

  27. Perumalla, K.S., Park, A.J.: Reverse computation for rollback-based fault tolerance in large parallel systems. Cluster Computing 16(2), 303–313 (2013)

    Google Scholar 

  28. Phillips, I., Ulidowski, I.: Reversing algebraic process calculi. Journal of Logic and Algebraic Programming 73, 70–96 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Plateau, B.: On the stochastic structure of parallelism and synchronization models for distributed algorithms. SIGMETRICS Perf. Eval. Rev. 13(2), 147–154 (1985)

    Article  Google Scholar 

  30. Rieffel, E.G., Polak, W.H.: Quantum Computing: a Gentle Introduction. MIT Press (2011)

    Google Scholar 

  31. Stewart, W.J.: Introduction to the Numerical Solution of Markov Chains. Princeton University Press, UK (1994)

    MATH  Google Scholar 

  32. Whittle, P.: Systems in stochastic equilibrium. John Wiley & Sons Ltd. (1986)

    Google Scholar 

  33. Yokoyama, T.: Reversible computation and reversible programming languages. Elect. notes in Theor. Comp. Sci. 253(6), 71–81 (2010)

    Article  Google Scholar 

  34. Yokoyama, T., Glück, R.: A reversible programming language and its invertible self-interpreter. In: Proc. of the 2007 ACM SIGPLAN Symposium on Partial Evaluation and Semantics-based Program Manipulation, pp. 144–153. ACM, New York (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabina Rossi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Marin, A., Rossi, S. (2015). Quantitative Analysis of Concurrent Reversible Computations. In: Sankaranarayanan, S., Vicario, E. (eds) Formal Modeling and Analysis of Timed Systems. FORMATS 2015. Lecture Notes in Computer Science(), vol 9268. Springer, Cham. https://doi.org/10.1007/978-3-319-22975-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22975-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22974-4

  • Online ISBN: 978-3-319-22975-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics