Abstract
Reversible computing is a paradigm of computation that extends the standard forward-only programming to reversible programming, so that programs can be executed both in the standard, forward direction, and backward, going back to past states. In this paper we present novel quantitative stochastic model for concurrent and cooperatsible computations. More precisely, we introduce the class of \(\rho \) -reversible stochastic automata and define a semantics for the synchronization ensuring that this class of models is closed under composition. For this class of automata we give an efficient way of deriving the equilibrium distribution. Moreover, we prove that the equilibrium distribution of the composition of reversible automata can be derived as the product of the equilibrium distributions of each automaton in isolation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bacci, G., Danos, V., Kammar, O.: On the statistical thermodynamics of reversible communicating processes. In: Corradini, A., Klin, B., Cîrstea, C. (eds.) CALCO 2011. LNCS, vol. 6859, pp. 1–18. Springer, Heidelberg (2011)
Baier, C., Hahn, E.M., Haverkort, B.R., Hermanns, H., Katoen, J.-P.: Model checking for performability. Math. Structures in Comp. Sci. 23(S.I. 04) (2013)
Balsamo, S., Marin, A.: Performance engineering with product-form models: efficient solutions and applications. In: Proc. of ICPE, pp. 437–448 (2011)
Bennett, C.: Logical reversibility of computations. IBM J. Res. Dev. 17(6), 525–532 (1973)
Bennett, C.: Thermodynamics of computation. Int. J. of Physics 21, 905–940 (1982)
Bernardo, M., Gorrieri, R.: A tutorial on EMPA: A theory of concurrent processes with nondeterminism, priorities, probabilities and time. Theoretical Computer Science 202, 1–54 (1998)
Bishop, P.G.: Using reversible computing to achieve fail-safety. In: Proc. of 8th Int. Symp. on Soft. Reliability Eng., pp. 182–191 (1997)
Boothe, B.: Efficient algorithms for bidirectional debugging. SIGPLAN Not. 35(5), 299–310 (2000)
Cardelli, L., Laneve, C.: Reversibility in massive concurrent systems. Scientific Annals of Computer Science 21(2), 175–198 (2011)
Danos, V., Krivine, J.: Reversible communicating systems. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 292–307. Springer, Heidelberg (2004)
Dubois, M., Annavaram, M., Stenstrom, P.: Parallel Computer Organization and Design. Cambridge Press (2012)
Harrison, P.G.: Turning back time in Markovian process algebra. Theoretical Computer Science 290(3), 1947–1986 (2003)
Hermanns, H.: Interactive Markov Chains. Springer (2002)
Hermanns, H., Herzog, U., Katoen, J.P.: Process algebra for performance evaluation. Theor. Comput. Sci. 274(1–2), 43–87 (2002)
Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge Press (1996)
Hillston, J., Marin, A., Piazza, C., Rossi, S.: Contextual lumpability. In: Proc. of Valuetools 2013 Conf. ACM Press (2013)
Jefferson, D.R.: Virtual time. ACM Trans. on Programming Languages and Systems 7(3), 404–425 (1985)
Jefferson, D.R., Reiher, P.: Supercritical speedup. In: Proc. of the 24th Annual Simulation Symp., pp. 159–168 (1991)
Kelly, F.: Reversibility and stochastic networks. Wiley, New York (1979)
Lanese, I., Lienhardt, M., Mezzina, C.A., Schmitt, A., Stefani, J.-B.: Concurrent flexible reversibility. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 370–390. Springer, Heidelberg (2013)
Lanese, I., Antares Mezzina, C., Tiezzi, F.: Causal-consistent reversibility. Bulletin of the EATCS 114 (2014)
Lee, J.: Dynamic reverse code generation for backward execution. Elect. notes in Theor. Comp. Sci. 174(4), 37–54 (2007)
Marin, A., Rossi, S.: Autoreversibility: exploiting symmetries in Markov chains. In: Proc. of MASCOTS 2013, pp. 151–160. IEEE Computer Society (2013)
Marin, A., Rossi, S.: On the relations between lumpability and reversibility. In: Proc. of MASCOTS 2014, pp. 427–432 (2014)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, New York (2000)
Perumalla, K.S.: Introduction to reversible computing. CRC Press (2013)
Perumalla, K.S., Park, A.J.: Reverse computation for rollback-based fault tolerance in large parallel systems. Cluster Computing 16(2), 303–313 (2013)
Phillips, I., Ulidowski, I.: Reversing algebraic process calculi. Journal of Logic and Algebraic Programming 73, 70–96 (2007)
Plateau, B.: On the stochastic structure of parallelism and synchronization models for distributed algorithms. SIGMETRICS Perf. Eval. Rev. 13(2), 147–154 (1985)
Rieffel, E.G., Polak, W.H.: Quantum Computing: a Gentle Introduction. MIT Press (2011)
Stewart, W.J.: Introduction to the Numerical Solution of Markov Chains. Princeton University Press, UK (1994)
Whittle, P.: Systems in stochastic equilibrium. John Wiley & Sons Ltd. (1986)
Yokoyama, T.: Reversible computation and reversible programming languages. Elect. notes in Theor. Comp. Sci. 253(6), 71–81 (2010)
Yokoyama, T., Glück, R.: A reversible programming language and its invertible self-interpreter. In: Proc. of the 2007 ACM SIGPLAN Symposium on Partial Evaluation and Semantics-based Program Manipulation, pp. 144–153. ACM, New York (2007)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Marin, A., Rossi, S. (2015). Quantitative Analysis of Concurrent Reversible Computations. In: Sankaranarayanan, S., Vicario, E. (eds) Formal Modeling and Analysis of Timed Systems. FORMATS 2015. Lecture Notes in Computer Science(), vol 9268. Springer, Cham. https://doi.org/10.1007/978-3-319-22975-1_14
Download citation
DOI: https://doi.org/10.1007/978-3-319-22975-1_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-22974-4
Online ISBN: 978-3-319-22975-1
eBook Packages: Computer ScienceComputer Science (R0)