iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-319-22183-0_28
Introducing Learning Mechanism for Class Responsibility Assignment Problem | SpringerLink
Skip to main content

Introducing Learning Mechanism for Class Responsibility Assignment Problem

  • Conference paper
  • First Online:
Search-Based Software Engineering (SSBSE 2015)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 9275))

Included in the following conference series:

  • 1060 Accesses

Abstract

Assigning responsibilities to classes is a vital task in object-oriented design, which has a great impact on the overall design of an application. However, this task is not easy for designers due to its complexity. Though many automated approaches have been developed to help designers to assign responsibilities to classes, none of them considers extracting the design knowledge (DK) about the relations between responsibilities in order to adapt designs better against design problems. To address the issue, we propose a novel Learning-based Genetic Algorithm (LGA) for the Class Responsibility Assignment (CRA) problem. In the proposed algorithm, a learning mechanism is introduced to extract DK about which responsibilities have a high probability to be assigned to the same class, and the extracted DK is employed to improve the design qualities of generated solutions. An experiment was conducted, which shows the effectiveness of the proposed approach.

This work is partially sponsored by the NSFC under Grant No. 61170025 and No. 61472286.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bowman, M., Briand, L.C., Labiche, Y.: Solving the class responsibility assignment problem in object-oriented analysis with multi-objective genetic algorithms. IEEE Trans. Softw. Eng. 36(6), 817–837 (2010)

    Article  Google Scholar 

  2. Masoud, H., Jalili, S.: A clustering-based model for class responsibility assignment problem in object-oriented analysis. J. Syst. Softw. 93(7), 110–131 (2014)

    Article  Google Scholar 

  3. Smith, J.E., Simons, C.L.: The influence of search components and problem characteristics in early life cycle class modelling. J. Syst. Softw. 103(5), 440–451 (2015)

    Article  Google Scholar 

  4. Lanza, M., Marinescu, R.: Object-Oriented Metrics in Practice: Using Software Metrics to Characterize, Evaluate, and Improve the Design of Object-Oriented Systems, 1st edn. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  5. de Oliveira, M., de Almeida, F., Horta, G.: Learning from optimization: a case study with apache ant. Inf. Softw. Technol. 57(1), 684–704 (2015)

    Google Scholar 

  6. Kelly, K.: Out of Control: The New Biology of Machines, Social Systems and the Economic World, 1st edn. Basic Books, New York (1995)

    Google Scholar 

  7. Baldwin, J.M.: A new factor in evolution. Am. Nat. 30(354), 441–451 (1896)

    Article  Google Scholar 

  8. Merceron, A., Yacef, K.: Interestingness measures for association rules in educational data. In: Educational Data Mining, pp. 57–66 (2008)

    Google Scholar 

  9. Manual Designs. http://www.cems.uwe.ac.uk/~clsimons/CaseStudies/ManualDesigns.pdf. Accessed on 01 July 2014

  10. Marín, J., Solé, R.V.: Macroevolutionary algorithms: a new optimization method on fitness landscapes. IEEE Trans. Evol. Comput. 3(4), 272–286 (1999)

    Article  Google Scholar 

  11. Corazza, A., Di Martino, S., Ferrucci, F., Gravino, C., Sarro, F., Mendes, E.: Using tabu search to configure support vector regression for effort estimation. Empir. Softw. Eng. 18(3), 506–546 (2013)

    Article  Google Scholar 

  12. Amal, B., Kessentini, M., Bechikh, S., Dea, J., Said, L.B.: On the use of machine learning and search-based software engineering for Ill-defined fitness function: a case study on software refactoring. In: Le Goues, C., Yoo, S. (eds.) SSBSE 2014. LNCS, vol. 8636, pp. 31–45. Springer, Heidelberg (2014)

    Google Scholar 

  13. Minku, L., Yao, X.: An analysis of multi-objective evolutionary algorithms for training ensemble models based on different performance measures in software effort estimation. In: PROMISE 2013, Article No. 8 (2013)

    Google Scholar 

  14. Sarro, F., Di Martino, S., Ferrucci, F., Gravino, C.: A further analysis on the use of genetic algorithm to configure support vector machines for inter-release fault prediction. In: ACM SAC 2012, pp. 1215–1220 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Liang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Xu, Y., Liang, P., Ali Babar, M. (2015). Introducing Learning Mechanism for Class Responsibility Assignment Problem. In: Barros, M., Labiche, Y. (eds) Search-Based Software Engineering. SSBSE 2015. Lecture Notes in Computer Science(), vol 9275. Springer, Cham. https://doi.org/10.1007/978-3-319-22183-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22183-0_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22182-3

  • Online ISBN: 978-3-319-22183-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics