Abstract
Landuse/cover evolution dynamic is a subject widely and thoroughly investigated, especially concerning consumption of natural and other lands, due to anthropogenic activities. This paper focuses on a region in southern Italy, where soil consumption is known to represent a urging matter of concern. However, although negative impacts of soil consumption are well known, to our knowledge there are no case studies presenting a precise quantitative measurement of the intensity of such phenomenon for the region of interest. This study aims at forecasting the development of urban settlements through the application of the cellular automata model SLEUTH; the first region to be investigated has been the Municipality of Altamura (Apulia region, Italy). This area has been used as a pilot case study to explore many difficulties and advantages in applying such a methodology to the whole southern Italian region. The final goal was to frame and populate an atlas of soil consumption in southern Italy, which intends to offer useful support to sustainable planning and policies.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Balena, P., Sannicandro, V., Torre, C.M.: Spatial multicrierial evaluation of soil consumption as a tool for SEA. In: Murgante, B., et al. (eds.) ICCSA 2014, Part III. LNCS, vol. 8581, pp. 446–458. Springer, Heidelberg (2014)
Sannicandro, V., Torre, C.M.: Monitoraggiodel land cover index e valutazionemultidimensionaledelletrasformazioniinsediativepotenziali, Atti 2015. ConvegnoRecuperiamoTerreno, IstitutoSuperiore per la Protezione e la RicercaAmbientale (ISPRA), Milano, vol. I, pp. 94–105, 6 maggio 2015. ISBN: 978-88-448-0710-8
Romano, B., Zullo, F.: Land urbanization in Central Italy: 50 years of evolution. J. Land Use Sci. (2012). http://dx.doi.org/10.1080/1747423X.2012.754963
Romano, B., Zullo, F.: Models of urban land use in Europe: assessment tools andcriticalities. Int. J. Agric. Environ. Inf. Syst. 4(3), 80–97 (2013). doi:10.4018/ijaeis.2013070105. IGI Global
Romano, B., Zullo, F.: The urban transformation of Italy’s Adriatic Coast Strip: fifty years of unsustainability. Land Use Policy 38, 26–36 (2014)
ISTAT. Le problematicheconnesse al consumo del suolo (2012). http://www.istat.it/it/archivio/51331
Murgante, B., Borruso, G., Lapucci, A.: Geocomputation and urban planning. In: Murgante, B., Borruso, G., Lapucci, A. (eds.) Geocomputation and Urban Planning Studies in Computational Intelligence. SCI, vol. 176, pp. 1–18. Springer, Heidelberg (2009). doi:10.1007/978-3-540-89930-3_1. ISBN: 978-3-540-89929-7
Von Neumann, J.: Theory of Self-Producing Automata. University of Illinois Press, Urban and Chicago (1996)
USGS. Project gigalopolis: urban and land cover modelling. US Geological Survey (2003) http://www.ncgia.ucsb.edu/projects/gig/
Clarke, K.C., Hoppens, S., Gaydos, L., A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environmental and Planning B: Planning and Design 24 (1997)
Jantz, C.A., Goetz, S.J., Shelley M.K.: Using the SLEUTH urban growth model to simualte the impacts of future policy scenarios on urban land use in the Baltimore - Washington metropolitan area. Environmental and Planning B: Planning and Design 30 (2003)
Clarke, K.C., Gaydos, L.J.: Loose-coupling a cellular automaton model and GIS: long-term urban growth prediction for San Francisco and Washington/Baltimore. International Journal of Geographical Information Science 12 (1998)
Caglioni, M., Pelizzoni, M., Rabino, G.A.: Urban sprawl: a case study for project gigalopolis using SLEUTH model. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173, pp. 436–445. Springer, Heidelberg (2006)
Martellozzo, F., Clarke, K.C.: Measuring urban sprawl, coalescence, and dispersal: a case study of Pordenone, Italy. Environment and Planning B: Planning and Design 2011 38, 1085–1104 (2011). doi:10.1068/b36090
Martellozzo, F.: Forecasting High Correlation Transition of Agricultural Landscapes into Urban Areas: Diachronic Case Study in North Eastern Italy. International Journal of Agricultural and Environmental Information Systems (IJAEIS) 3(2), 22–34 (2012). doi:10.4018/jaeis.2012070102
Nolè, G., Murgante, B., Calamita, G., Lanorte, A., Lasaponara, R.: Evaluation of Urban Sprawl from space using open source technologies. Ecological Informatics (2014). DOI http://dx.doi.org/10.1016/j.ecoinf.2014.05.005
Nolè, G., Lasaponara, R., Lanorte, A., Murgante, B.: Quantifying Urban Sprawl with Spatial Autocorrelation Techniques using Multi-Temporal Satellite Data. International Journal of Agricultural and Environmental Information Systems 5(2), 20–38 (2014). doi:10.4018/IJAEIS.2014040102. IGI Global
Amato, F., Pontrandolfi, P., Murgante, B.: Using spatiotemporal analysis in urban sprawl assessment and prediction. In: Murgante, B., et al. (eds.) ICCSA 2014, Part II. LNCS, vol. 8580, pp. 758–773. Springer, Heidelberg (2014). doi:10.1007/978-3-319-09129-7_55
Amato, F., Pontrandolfi, P., Murgante, B.: Modelli di analisi e previsionespazio-temporali per la valutazione del consumo di suoloedimplicazioninellepoliticheurbanistiche, UrbanisticaInformazioni, Anno XXXXI, Settembre-Ottobre 2014, Sessione 7, vol. 257, pp. 6–10. INU Edizioni (2014b). ISSN: 0392-5005
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Amato, F., Martellozzo, F., Murgante, B., Nolè, G. (2015). A Quantitative Prediction of Soil Consumption in Southern Italy. In: Gervasi, O., et al. Computational Science and Its Applications -- ICCSA 2015. ICCSA 2015. Lecture Notes in Computer Science(), vol 9157. Springer, Cham. https://doi.org/10.1007/978-3-319-21470-2_58
Download citation
DOI: https://doi.org/10.1007/978-3-319-21470-2_58
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-21469-6
Online ISBN: 978-3-319-21470-2
eBook Packages: Computer ScienceComputer Science (R0)