iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-319-21398-9_28
Time-Space Tradeoffs for Dynamic Programming Algorithms in Trees and Bounded Treewidth Graphs | SpringerLink
Skip to main content

Time-Space Tradeoffs for Dynamic Programming Algorithms in Trees and Bounded Treewidth Graphs

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9198))

Included in the following conference series:

Abstract

The well-known Courcelle’s theorem states that many graph properties (that are expressible in monadic second order logic) can be solved in linear time on graphs of bounded treewidth. Logspace versions of this using automata theoretic framework are also known. In this paper, we develop an alternate methodology using the standard table-based dynamic programming approach to give a space efficient version of Courcelle’s theorem. We assume that the given graph and its tree decomposition are given in a read-only memory. Our algorithms use the recently developed stack-compression machinery and the classical framework of Borie et al. to develop time-space tradeoffs for dynamic programming algorithms that use \({\mathcal {O}}(p \log _p n)\) variables where \(2 \le p \le n\) is a parameter. En route we also generalize the stack compression framework to a broader class of algorithms, which we believe can be of independent interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs. Journal of Algorithms 12, 308–340 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  2. Asano, T.: Constant-Working-Space Algorithms for Image Processing. In: Nielsen, F. (ed.) ETVC 2008. LNCS, vol. 5416, pp. 268–283. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Asano, T.: Constant-Working-Space Algorithms: How Fast Can We Solve Problems without Using Any Extra Array? In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 1–1. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Asano, T.: Designing Algorithms with Limited Work Space. In: Ogihara, M., Tarui, J. (eds.) TAMC 2011. LNCS, vol. 6648, pp. 1–1. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  5. Asano, T., Doerr, B.: Memory-constrained algorithms for shortest path problem. In: Proceedings of the 23rd Annual Canadian Conference on Computational Geometry, CCCG (2011)

    Google Scholar 

  6. Asano, T., Kirkpatrick, D., Nakagawa, K., Watanabe, O.: \(\widetilde{O}(\sqrt{n})\)-Space and polynomial-time algorithm for planar directed graph reachability. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part II. LNCS, vol. 8635, pp. 45–56. Springer, Heidelberg (2014)

    Google Scholar 

  7. Asano, T., Mulzer, W., Rote, G., Wang, Y.: Constant-work-space algorithms for geometric problems. JoCG 2(1), 46–68 (2011)

    MathSciNet  Google Scholar 

  8. Asano, T., Mulzer, W., Wang, Y.: Constant-work-space algorithms for shortest paths in trees and simple polygons. J. Graph Algorithms Appl. 15(5), 569–586 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. Aspvall, B., Telle, J.A., Proskurowski, A.: Memory requirements for table computations in partial k-tree algorithms. Algorithmica 27(3), 382–394 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Barba, L., Korman, M., Langerman, S., Sadakane, K., Silveira, R.: Space-time trade-offs for stack-based algorithms. Algorithmica (2014) (in press)

    Google Scholar 

  11. Bhattacharya, B.K., De, M., Nandy, S.C., Roy, S.: Maximum independent set for interval graphs and trees in space efficient models. In: Proceedings of the 26th Canadian Conference on Computational Geometry, CCCG (2014)

    Google Scholar 

  12. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  13. Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theor. Comput. Sci. 209(1–2), 1–45 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  14. Bodlaender, H.L., Koster, A.M.C.A.: Combinatorial optimization on graphs of bounded treewidth. Comput. J. 51(3), 255–269 (2008)

    Article  MathSciNet  Google Scholar 

  15. Bodlaende, H.L., Telle, J.A.: Space-efficient construction variants of dynamic programming. Nord. J. Comput. 11(4), 374–385 (2004)

    Google Scholar 

  16. Borie, R.B.: Gary Parker, R., Tovey, C.A.: Automatic generation of linear-time algorithms from predicate calculus descriptions of problems on recursively constructed graph families. Algorithmica 7(5&6), 555–581 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  17. Bose, P., Morin, P.: An improved algorithm for subdivision traversal without extra storage. Int. J. Comput. Geometry Appl. 12(4), 297–308 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press (2009)

    Google Scholar 

  19. Courcelle, B.: The monadic second-order logic of graphs I: Recognizable sets of finite graphs. Inform. and Comput. 85, 12–75 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  20. Courcelle, B.: The expression of graph properties and graph transformations in monadic second-order logic. In: Handbook of Graph Grammars and Computing by Graph Transformation, vol. 1, pp. 313–400. World Sci. Publ., River Edge (1997)

    Google Scholar 

  21. Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic. Cambridge University Press (2012)

    Google Scholar 

  22. Datta, S., Limaye, N., Nimbhorkar, P., Thierauf, T., Wagner, F.: Planar graph isomorphism is in log-space. In: Proceedings of the 24th Annual IEEE Conference on Computational Complexity, CCC 2009, pp. 203–214 (2009)

    Google Scholar 

  23. De, M., Nandy, S.C., Roy, S.: Convex hull and linear programming in read-only setup with limited work-space. CoRR, abs/1212.5353 (2012)

    Google Scholar 

  24. Elberfeld, M., Jakoby, A., Tantau, T.: Logspace versions of the theorems of bodlaender and courcelle. In: 51th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2010, pp. 143–152 (2010)

    Google Scholar 

  25. Grohe, M., Marx, D.: Structure theorem and isomorphism test for graphs with excluded topological subgraphs. SIAM J. Comput. 44(1), 114–159 (2015)

    Article  MathSciNet  Google Scholar 

  26. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press (2006)

    Google Scholar 

  27. Reingold, O.: Undirected connectivity in log-space. J. ACM 55(4), 17:1–17:24 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkatesh Raman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Banerjee, N., Chakraborty, S., Raman, V., Roy, S., Saurabh, S. (2015). Time-Space Tradeoffs for Dynamic Programming Algorithms in Trees and Bounded Treewidth Graphs. In: Xu, D., Du, D., Du, D. (eds) Computing and Combinatorics. COCOON 2015. Lecture Notes in Computer Science(), vol 9198. Springer, Cham. https://doi.org/10.1007/978-3-319-21398-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21398-9_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21397-2

  • Online ISBN: 978-3-319-21398-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics