iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-319-20309-6_53
Data-Driven Model Reduction for Fast, High Fidelity Atrial Electrophysiology Computations | SpringerLink
Skip to main content

Data-Driven Model Reduction for Fast, High Fidelity Atrial Electrophysiology Computations

  • Conference paper
  • First Online:
Functional Imaging and Modeling of the Heart (FIMH 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9126))

  • 1780 Accesses

Abstract

Understanding and predicting atrial electrophysiology, for diagnosis and therapy planning purposes, calls for methods able to accurately represent the complex patterns of atrial electrical activity, and to produce very fast predictions to be suitable for use in the clinical practice. We apply a data-driven approach for the model reduction of an atrial cellular model. The reduced model predicts cellular action potentials (AP) in a simple form but is effective in capturing the physiological complexity of the original model. The model construction starts from an AP manifold learning which reduces the AP manifold dimension to 15, and continues with a regression model learning to predict the 15 components in the reduced AP manifold. The regression model has the potential to drastically improve the performance of atrial tissue-level electrophysiology (EP) modeling, enabling a 75 % reduction of the computational cost with the same time step and up to two order of magnitudes smaller computational time with larger time steps. The model is also capable of describing the restitution properties of the AP, as demonstrated in tests with varying diastolic intervals. This model has great potential use for real-time personalized atrial EP modeling, and the same modeling technique can be extended to the study of other excitable myocardial tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aslanidi, O., Colman, M., Stott, J., Dobrzynski, H., Boyett, M., Holden, A., Zhang, H.: 3D virtual Human Atria: a computational platform for studying clinical atrial fibrillation. Prog Biophys. Mol. Biol. 107, 156–168 (2011)

    Article  Google Scholar 

  2. Atienza, F., Almendral, J., Moreno, J., Vaidyanathan, R., Talkachou, A., Kalifa, J., Arenal, A., Villacastin, J., Torrecilla, E., Sanchez, A., Ploutz-Snyder, R., Jalife, J., Berenfeld, O.: Activation of inward rectifier potassium channels accelerates atrial fibrillation in Humans: evidence for a reentrant mechanism. Circulation 114, 2434–2442 (2006)

    Article  Google Scholar 

  3. Boulakia, M., Schenone, E., Gerbeau, J.F.: Reduced-order modeling for cardiac electrophysiology. application to parameter identification. Int. J. Num. Meth. Biomed. Eng. 28(6–7), 727–744 (2012)

    Article  MathSciNet  Google Scholar 

  4. Courtemanche, M., Ramirez, R., Nattel, S.: Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. Am. J. Physiol. 275, H301–H321 (1998)

    Google Scholar 

  5. FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445–466 (1961)

    Article  Google Scholar 

  6. Friedman, J.H., Stuetzle, W.: Projection pursuit regression. J. Am. Stat. Assoc. 76, 817–823 (1981)

    Article  MathSciNet  Google Scholar 

  7. Friedman, J., Hastie, T., Tibshirani, R.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, New York (2009)

    Google Scholar 

  8. Krummen, D., Bayer, J., Ho, J., Ho, G., Smetak, M., Clopton, P., Trayanova, N., Narayan, S.: Mechanisms of human atrial fibrillation initiation: clinical and computational studies of repolarization restitution and activation latency. Circ. Arrhythm. Electrophysiol. 5(6), 1149–1159 (2012)

    Article  Google Scholar 

  9. Mansi, T., Georgescu, B., Hussan, J., Hunter, P.J., Kamen, A., Comaniciu, D.: Data-driven reduction of a cardiac myofilament model. In: Ourselin, S., Rueckert, D., Smith, N. (eds.) FIMH 2013. LNCS, vol. 7945, pp. 232–240. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  10. Mitchell, C., Schaeffer, D.: A two-current model for the dynamics of cardiac membrane. Bull. Math. Biol. 65(5), 767–793 (2003)

    Article  Google Scholar 

  11. Rapaka, S., Mansi, T., Georgescu, B., Pop, M., Wright, G., Kamen, A., Comaniciu, D.: Lbm-ep: Lattice-Boltzmann method for fast cardiac electrophysiology simulation from 3D images. Med. Image Comput. Comput Assist. Interv. 15(2), 33–40 (2012)

    Google Scholar 

  12. Sobie, E.: Parameter sensitivity analysis in electrophysiological models using multivariable regression. Biophys. J. 96(4), 1264–1274 (2009)

    Article  Google Scholar 

  13. Kanu, U., Iravanian, S., Gilmour, R., Christini, D.: Control of action potential duration alternans in canine cardiac ventricular tissue. IEEE Trans. Biomed. Eng. 58(4), 894–904 (2011)

    Article  Google Scholar 

  14. Zettinig, O., Mansi, T., Neumann, D., Georgescu, B., Rapaka, S., et al.: Data-driven estimation of cardiac electrical diffusivity from 12-lead ECG signals. Med. Image Anal. 18(8), 1361–1376 (2014)

    Article  Google Scholar 

  15. Zheng, Y., Barbu, A., Georgescu, B., Scheuering, M., Comaniciu, D.: Four-chamber heart modeling and automatic segmentation for 3-D cardiac CT volumes using marginal space learning and steerable features. IEEE Trans. Med. Imaging 27(11), 1668–1681 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiziano Passerini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Yang, H., Passerini, T., Mansi, T., Comaniciu, D. (2015). Data-Driven Model Reduction for Fast, High Fidelity Atrial Electrophysiology Computations. In: van Assen, H., Bovendeerd, P., Delhaas, T. (eds) Functional Imaging and Modeling of the Heart. FIMH 2015. Lecture Notes in Computer Science(), vol 9126. Springer, Cham. https://doi.org/10.1007/978-3-319-20309-6_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20309-6_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20308-9

  • Online ISBN: 978-3-319-20309-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics