Abstract
We propose a new variant of the LZ78 factorization which we call the LZ Double-factor factorization (LZD factorization). Each factor of the LZD factorization of a string is the concatenation of the two longest previous factors, while each factor of the LZ78 factorization is that of the longest previous factor and the following character. Interestingly, this simple modification drastically improves the compression ratio in practice. We propose two online algorithms to compute the LZD factorization in \(O(m (M + \min (m, M)\log \sigma ))\) time and \(O(m)\) space, or in \(O(N \log \sigma )\) time and \(O(N)\) space, where \(m\) is the number of factors to output, \(M\) is the length of the longest factor(s), \(N\) is the length of the input string, and \(\sigma \) is the alphabet size. We also show two versions of our LZD factorization with variable-to-fixed encoding, and present online algorithms to compute these versions in \(O(N + \min (m, 2^L) (M + \min (m, M, 2^L) \log \sigma ))\) time and \(O(\min (2^L, m))\) space, where \(L\) is the bit-length of each fixed-length code word. The LZD factorization and its versions with variable-to-fixed encoding are actually grammar-based compression, and our experiments show that our algorithms outperform the state-of-the-art online grammar-based compression algorithms on several data sets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The bound \(M = O(N)\) can be achieved with string \(a^{N-1}\)$ with \(N-1 = 2^k\) for some \(k\). Observe that \(f_1 = aa\), \(f_2 = f_1f_1 = aaaa\), \(\ldots \), \(f_{m-1} = a^{\frac{N-1}{2}}\), and \(f_{m} = \)$.
- 2.
Source codes are available at https://github.com/kg86/lzd.
- 3.
The number of characters the algorithm can process a second.
- 4.
- 5.
- 6.
The first 10 GB of enwiki-20150112-pages-meta-history1.xml-p000000010p000002983.7z, downloaded from http://dumps.wikimedia.org/backup-index.html.
References
Amir, A., Farach, M., Idury, R.M., Poutré, J.A.L., Schäffer, A.A.: Improved dynamic dictionary matching. Inf. Comput. 119(2), 258–282 (1995)
Bannai, H., Inenaga, S., Takeda, M.: Efficient LZ78 factorization of grammar compressed text. In: Calderón-Benavides, L., González-Caro, C., Chávez, E., Ziviani, N. (eds.) SPIRE 2012. LNCS, vol. 7608, pp. 86–98. Springer, Heidelberg (2012)
Claude, F., Navarro, G.: Self-indexed grammar-based compression. Fundamenta Informaticae 111(3), 313–337 (2011)
Goto, K., Bannai, H., Inenaga, S., Takeda, M.: Speeding up q-gram mining on grammar-based compressed texts. In: Kärkkäinen, J., Stoye, J. (eds.) CPM 2012. LNCS, vol. 7354, pp. 220–231. Springer, Heidelberg (2012)
Hermelin, D., Landau, G.M., Landau, S., Weimann, O.: Unified compression-based acceleration of edit-distance computation. Algorithmica 65(2), 339–353 (2013)
Larsson, N.J., Moffat, A.: Offline dictionary-based compression. In: DCC 1999, 296–305 (1999)
Maruyama, S., Sakamoto, H., Takeda, M.: An online algorithm for lightweight grammar-based compression. Algorithms 5(2), 214–235 (2012)
Maruyama, S., Tabei, Y.: Fully online grammar compression in constant space. In: DCC 2014, pp. 173–182 (2014)
Maruyama, S., Tabei, Y., Sakamoto, H., Sadakane, K.: Fully-online grammar compression. In: Kurland, O., Lewenstein, M., Porat, E. (eds.) SPIRE 2013. LNCS, vol. 8214, pp. 218–229. Springer, Heidelberg (2013)
Nevill-Manning, C.G., Witten, I.H., Maulsby, D.L.: Compression by induction of hierarchical grammars. In: DCC 1994. pp. 244–253 (1994)
Peter, T.: A modified LZW data compression scheme. In: Australian Computer Science Communications, pp. 262–272 (1987)
Sekine, K., Sasakawa, H., Yoshida, S., Kida, T.: Adaptive dictionary sharing method for re-pair algorithm. In: DCC 2014, p. 425 (2014)
Shibata, Y., Kida, T., Fukamachi, S., Takeda, M., Shinohara, A., Shinohara, T., Arikawa, S.: Speeding up pattern matching by text compression. In: Bongiovanni, G., Petreschi, R., Gambosi, G. (eds.) CIAC 2000. LNCS, vol. 1767, pp. 306–315. Springer, Heidelberg (2000)
Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14(3), 249–260 (1995)
Westbrook, J.: Fast incremental planarity testing. In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 342–353. Springer, Heidelberg (1992)
Ziv, J., Lempel, A.: Compression of individual sequences via variable-length coding. IEEE Trans. Inf. Theory 24(5), 530–536 (1978)
Acknowledgements
We would like to thank Shirou Maruyama and Takuya Kida for providing source codes of their compression programs FOLCA and ADS.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Goto, K., Bannai, H., Inenaga, S., Takeda, M. (2015). LZD Factorization: Simple and Practical Online Grammar Compression with Variable-to-Fixed Encoding. In: Cicalese, F., Porat, E., Vaccaro, U. (eds) Combinatorial Pattern Matching. CPM 2015. Lecture Notes in Computer Science(), vol 9133. Springer, Cham. https://doi.org/10.1007/978-3-319-19929-0_19
Download citation
DOI: https://doi.org/10.1007/978-3-319-19929-0_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-19928-3
Online ISBN: 978-3-319-19929-0
eBook Packages: Computer ScienceComputer Science (R0)