iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-319-18720-4_24
Cluster Based Vector Attribute Filtering | SpringerLink
Skip to main content

Abstract

Morphological attribute filters operate on images based on properties or attributes of connected components. Until recently, attribute filtering was based on a single global threshold on a scalar property to remove or retain objects. A single threshold struggles in case no single property or attribute value has a suitable, usually multi-modal, distribution. Vector-attribute filtering allows better description of characteristic features for 2D images. In this paper, we apply vector-attribute filtering to 3D and incorporate unsupervised pattern recognition, where connected components are classified based on the similarity of feature vectors. Using a single attribute allows multi-thresholding for attribute filters where more than two classes of structures of interest can be selected. In vector-attribute filters automatic clustering avoids the need for either setting very many attribute thresholds, or finding suitable class prototypes in 3D and setting a dissimilarity threshold. Explorative visualization reduces to visualizing and selecting relevant clusters. We show that the performance of these new filters is better than those of regular attribute filters in enhancement of objects in medical images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Kluwer Academic Publishers, Norwell (1981)

    Google Scholar 

  2. Breen, E.J., Jones, R.: Attribute openings, thinnings and granulometries. Comp. Vis. Image Understand. 64(3), 377–389 (1996)

    Article  Google Scholar 

  3. Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002)

    Article  Google Scholar 

  4. Fukunaga, K., Hostetler, L.D.: Estimation of the gradient of a density function with applications in pattern recognition. IEEE Trans. Inform. Theor. IT-21, 32–40 (1975)

    Google Scholar 

  5. Kiwanuka, F.N., Wilkinson, M.H.F.: Radial Moment Invariants for Attribute Filtering in 3D. In: Kthe, U., Montanvert, A., Soille, P. (eds.) Proc. Workshop on Applications of Discrete Geometry and Mathematical Morphology (WADGMM), pp. 37–41 (2010)

    Google Scholar 

  6. Kiwanuka, F.N., Ouzounis, G.K., Wilkinson, M.H.: Surface-area-based attribute filtering in 3d. In: Wilkinson, M.H.F., Roerdink, J.B.T.M. (eds.) ISMM 2009. LNCS, vol. 5720, pp. 70–81. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Kiwanuka, F.N., Wilkinson, M.H.F.: Cluster-based vector-attribute filtering for ct and mri enhancement. In: ICPR, pp. 3112–3115. IEEE (2012)

    Google Scholar 

  8. Kleinberg, J.: An impossibility theorem for clustering, pp. 446–453. MIT Press (2002)

    Google Scholar 

  9. Linde, Y., Buzo, A., Gray, R.: An algorithm for vector quantizer design. IEEE Transactions on Communications 28(1), 84–95 (1990)

    Article  Google Scholar 

  10. Macqueen, J.B.: Some methods of classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297 (1967)

    Google Scholar 

  11. Naegel, B., Passat, N., Boch, N., Kocher, M.: Segmentation using vector-attribute filters: Methodology and application to dermatological imaging. In: Proc. Int. Symp. Math. Morphology, ISMM 2007, pp. 239–250 (2007)

    Google Scholar 

  12. Ouzounis, G.K., Giannakopoulos, S., Simopoulos, C.E., Wilkinson, M.H.F.: Robust extraction of urinary stones from ct data using attribute filters. Proc. Int. Conf. Image Proc. (2009) (submitted)

    Google Scholar 

  13. Perret, B., Collet, C.: Connected image processing with multivariate attributes: An unsupervised markovian classification approach. Computer Vision and Image Understanding 133, 1–14 (2015)

    Article  Google Scholar 

  14. Salembier, P., Oliveras, A., Garrido, L.: Anti-extensive connected operators for image and sequence processing. IEEE Trans. Image Proc. 7, 555–570 (1998)

    Article  Google Scholar 

  15. Salembier, P., Serra, J.: Flat zones filtering, connected operators, and filters by reconstruction. IEEE Trans. Image Proc. 4, 1153–1160 (1995)

    Article  Google Scholar 

  16. Salembier, P., Wilkinson, M.H.F.: Connected operators: A review of region-based morphological image processing techniques. IEEE Signal Processing Magazine 26(6), 136–157 (2009)

    Article  Google Scholar 

  17. Urbach, E.R., Boersma, N.J., Wilkinson, M.H.F.: Vector-attribute filters. In: Mathematical Morphology: 40 Years On, Proc. Int. Symp. Math. Morphology (ISMM) 2005, April 18-20, pp. 95–104. Paris (2005)

    Google Scholar 

  18. Urbach, E.: Contextual image filtering. In: 24th International Conference on Image and Vision Computing New Zealand, IVCNZ 2009, pp. 299–303 (November 2009)

    Google Scholar 

  19. Westenberg, M.A., Roerdink, J.B.T.M., Wilkinson, M.H.F.: Volumetric attribute filtering and interactive visualization using the max-tree representation. IEEE Trans. Image Proc. 16, 2943–2952 (2007)

    Article  MathSciNet  Google Scholar 

  20. Wilkinson, M.H.F., Westenberg, M.A.: Shape preserving filament enhancement filtering. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 770–777. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  21. Xu, Y., Géraud, T., Najman, L.: Morphological filtering in shape spaces: Applications using tree-based image representations. CoRR abs/1204.4758 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fred N. Kiwanuka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Kiwanuka, F.N., Wilkinson, M.H.F. (2015). Cluster Based Vector Attribute Filtering. In: Benediktsson, J., Chanussot, J., Najman, L., Talbot, H. (eds) Mathematical Morphology and Its Applications to Signal and Image Processing. ISMM 2015. Lecture Notes in Computer Science(), vol 9082. Springer, Cham. https://doi.org/10.1007/978-3-319-18720-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18720-4_24

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18719-8

  • Online ISBN: 978-3-319-18720-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics