Abstract
Morphological attribute filters operate on images based on properties or attributes of connected components. Until recently, attribute filtering was based on a single global threshold on a scalar property to remove or retain objects. A single threshold struggles in case no single property or attribute value has a suitable, usually multi-modal, distribution. Vector-attribute filtering allows better description of characteristic features for 2D images. In this paper, we apply vector-attribute filtering to 3D and incorporate unsupervised pattern recognition, where connected components are classified based on the similarity of feature vectors. Using a single attribute allows multi-thresholding for attribute filters where more than two classes of structures of interest can be selected. In vector-attribute filters automatic clustering avoids the need for either setting very many attribute thresholds, or finding suitable class prototypes in 3D and setting a dissimilarity threshold. Explorative visualization reduces to visualizing and selecting relevant clusters. We show that the performance of these new filters is better than those of regular attribute filters in enhancement of objects in medical images.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Kluwer Academic Publishers, Norwell (1981)
Breen, E.J., Jones, R.: Attribute openings, thinnings and granulometries. Comp. Vis. Image Understand. 64(3), 377–389 (1996)
Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002)
Fukunaga, K., Hostetler, L.D.: Estimation of the gradient of a density function with applications in pattern recognition. IEEE Trans. Inform. Theor. IT-21, 32–40 (1975)
Kiwanuka, F.N., Wilkinson, M.H.F.: Radial Moment Invariants for Attribute Filtering in 3D. In: Kthe, U., Montanvert, A., Soille, P. (eds.) Proc. Workshop on Applications of Discrete Geometry and Mathematical Morphology (WADGMM), pp. 37–41 (2010)
Kiwanuka, F.N., Ouzounis, G.K., Wilkinson, M.H.: Surface-area-based attribute filtering in 3d. In: Wilkinson, M.H.F., Roerdink, J.B.T.M. (eds.) ISMM 2009. LNCS, vol. 5720, pp. 70–81. Springer, Heidelberg (2009)
Kiwanuka, F.N., Wilkinson, M.H.F.: Cluster-based vector-attribute filtering for ct and mri enhancement. In: ICPR, pp. 3112–3115. IEEE (2012)
Kleinberg, J.: An impossibility theorem for clustering, pp. 446–453. MIT Press (2002)
Linde, Y., Buzo, A., Gray, R.: An algorithm for vector quantizer design. IEEE Transactions on Communications 28(1), 84–95 (1990)
Macqueen, J.B.: Some methods of classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297 (1967)
Naegel, B., Passat, N., Boch, N., Kocher, M.: Segmentation using vector-attribute filters: Methodology and application to dermatological imaging. In: Proc. Int. Symp. Math. Morphology, ISMM 2007, pp. 239–250 (2007)
Ouzounis, G.K., Giannakopoulos, S., Simopoulos, C.E., Wilkinson, M.H.F.: Robust extraction of urinary stones from ct data using attribute filters. Proc. Int. Conf. Image Proc. (2009) (submitted)
Perret, B., Collet, C.: Connected image processing with multivariate attributes: An unsupervised markovian classification approach. Computer Vision and Image Understanding 133, 1–14 (2015)
Salembier, P., Oliveras, A., Garrido, L.: Anti-extensive connected operators for image and sequence processing. IEEE Trans. Image Proc. 7, 555–570 (1998)
Salembier, P., Serra, J.: Flat zones filtering, connected operators, and filters by reconstruction. IEEE Trans. Image Proc. 4, 1153–1160 (1995)
Salembier, P., Wilkinson, M.H.F.: Connected operators: A review of region-based morphological image processing techniques. IEEE Signal Processing Magazine 26(6), 136–157 (2009)
Urbach, E.R., Boersma, N.J., Wilkinson, M.H.F.: Vector-attribute filters. In: Mathematical Morphology: 40 Years On, Proc. Int. Symp. Math. Morphology (ISMM) 2005, April 18-20, pp. 95–104. Paris (2005)
Urbach, E.: Contextual image filtering. In: 24th International Conference on Image and Vision Computing New Zealand, IVCNZ 2009, pp. 299–303 (November 2009)
Westenberg, M.A., Roerdink, J.B.T.M., Wilkinson, M.H.F.: Volumetric attribute filtering and interactive visualization using the max-tree representation. IEEE Trans. Image Proc. 16, 2943–2952 (2007)
Wilkinson, M.H.F., Westenberg, M.A.: Shape preserving filament enhancement filtering. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 770–777. Springer, Heidelberg (2001)
Xu, Y., Géraud, T., Najman, L.: Morphological filtering in shape spaces: Applications using tree-based image representations. CoRR abs/1204.4758 (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Kiwanuka, F.N., Wilkinson, M.H.F. (2015). Cluster Based Vector Attribute Filtering. In: Benediktsson, J., Chanussot, J., Najman, L., Talbot, H. (eds) Mathematical Morphology and Its Applications to Signal and Image Processing. ISMM 2015. Lecture Notes in Computer Science(), vol 9082. Springer, Cham. https://doi.org/10.1007/978-3-319-18720-4_24
Download citation
DOI: https://doi.org/10.1007/978-3-319-18720-4_24
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-18719-8
Online ISBN: 978-3-319-18720-4
eBook Packages: Computer ScienceComputer Science (R0)