iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-319-18720-4_18
New Characterizations of Minimum Spanning Trees and of Saliency Maps Based on Quasi-flat Zones | SpringerLink
Skip to main content

New Characterizations of Minimum Spanning Trees and of Saliency Maps Based on Quasi-flat Zones

  • Conference paper
Mathematical Morphology and Its Applications to Signal and Image Processing (ISMM 2015)

Abstract

We study three representations of hierarchies of partitions: dendrograms (direct representations), saliency maps, and minimum spanning trees. We provide a new bijection between saliency maps and hierarchies based on quasi-flat zones as used in image processing and characterize saliency maps and minimum spanning trees as solutions to constrained minimization problems where the constraint is quasi-flat zones preservation. In practice, these results form a toolkit for new hierarchical methods where one can choose the most convenient representation. They also invite us to process non-image data with morphological hierarchies.

This work received funding from ANR (contract ANR-2010-BLAN-0205-03), CAPES/PVE (grant 064965/2014-01), and CAPES/COFECUB (grant 592/08).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. PAMI 33(5), 898–916 (2011)

    Article  Google Scholar 

  2. Bender, M., Farach-Colton, M.: The LCA problem revisited. In: Latin American Theoretical INformatics, pp. 88–94 (2000)

    Google Scholar 

  3. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C., et al.: Introduction to algorithms, vol. 2. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  4. Couprie, M., Najman, L., Bertrand, G.: Quasi-linear algorithms for the topological watershed. JMIV 22(2-3), 231–249 (2005)

    Article  MathSciNet  Google Scholar 

  5. Cousty, J., Najman, L.: Incremental algorithm for hierarchical minimum spanning forests and saliency of watershed cuts. In: Soille, P., Pesaresi, M., Ouzounis, G.K. (eds.) ISMM 2011. LNCS, vol. 6671, pp. 272–283. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Cousty, J., Najman, L., Perret, B.: Constructive links between some morphological hierarchies on edge-weighted graphs. In: Hendriks, C.L.L., Borgefors, G., Strand, R. (eds.) ISMM 2013. LNCS, vol. 7883, pp. 86–97. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  7. Felzenszwalb, P., Huttenlocher, D.: Efficient graph-based image segmentation. IJCV 59, 167–181 (2004)

    Article  Google Scholar 

  8. Guigues, L., Cocquerez, J.P., Men, H.L.: Scale-sets image analysis. IJCV 68(3), 289–317 (2006)

    Article  Google Scholar 

  9. Guimarães, S.J.F., Cousty, J., Kenmochi, Y., Najman, L.: A hierarchical image segmentation algorithm based on an observation scale. In: Gimel’farb, G., et al. (eds.) SSPR & SPR 2012. LNCS, vol. 7626, pp. 116–125. Springer, Heidelberg (2012)

    Google Scholar 

  10. Kiran, B.R., Serra, J.: Scale space operators on hierarchies of segmentations. In: Kuijper, A., Bredies, K., Pock, T., Bischof, H. (eds.) SSVM 2013. LNCS, vol. 7893, pp. 331–342. Springer, Heidelberg (2013)

    Google Scholar 

  11. Leclerc, B.: Description combinatoire des ultramétriques. Mathématiques et Sciences Humaines 73, 5–37 (1981)

    MathSciNet  Google Scholar 

  12. Meyer, F., Maragos, P.: Morphological scale-space representation with levelings. In: Nielsen, M., Johansen, P., Fogh Olsen, O., Weickert, J. (eds.) Scale-Space 1999. LNCS, vol. 1682, pp. 187–198. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  13. Najman, L.: On the equivalence between hierarchical segmentations and ultrametric watersheds. JMIV 40(3), 231–247 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. Najman, L., Cousty, J.: A graph-based mathematical morphology reader. PRL 47(1), 3–17 (2014)

    Article  Google Scholar 

  15. Najman, L., Cousty, J., Perret, B.: Playing with kruskal: Algorithms for morphological trees in edge-weighted graphs. In: Hendriks, C.L.L., Borgefors, G., Strand, R. (eds.) ISMM 2013. LNCS, vol. 7883, pp. 135–146. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  16. Nakache, J.P., Confais, J.: Approche pragmatique de la classification: arbres hiérarchiques, partitionnements. Editions Technip (2004)

    Google Scholar 

  17. Kiran, B.R., Serra, J.: Global–local optimizations by hierarchical cuts and climbing energies. PR 47(1), 12–24 (2014)

    Google Scholar 

  18. Ronse, C.: Ordering partial partitions for image segmentation and filtering: Merging, creating and inflating blocks. JMIV 49(1), 202–233 (2014)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Cousty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Cousty, J., Najman, L., Kenmochi, Y., Guimarães, S. (2015). New Characterizations of Minimum Spanning Trees and of Saliency Maps Based on Quasi-flat Zones. In: Benediktsson, J., Chanussot, J., Najman, L., Talbot, H. (eds) Mathematical Morphology and Its Applications to Signal and Image Processing. ISMM 2015. Lecture Notes in Computer Science(), vol 9082. Springer, Cham. https://doi.org/10.1007/978-3-319-18720-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18720-4_18

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18719-8

  • Online ISBN: 978-3-319-18720-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics