iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-319-18714-3_21
Unpacking the Artifact Knowledge: Secondary Data Analysis in Design Science Research | SpringerLink
Skip to main content

Unpacking the Artifact Knowledge: Secondary Data Analysis in Design Science Research

  • Conference paper
New Horizons in Design Science: Broadening the Research Agenda (DESRIST 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9073))

Abstract

Evaluation of design artifacts generates a set of scientifically valuable data, which is primarily used to prove the utility of the artifact or to identify potential for improvement. Extension of such studies by reanalyzing the same data set did not attract much attention in design-oriented research and design science. However, the reuse of this data with the secondary analysis approaches can provide valuable insights on artifact-based interventions. This paper aims at launching a debate on the role of secondary analysis in DSR. We argue that secondary analysis of evaluation data shall be granted respect within the DSR-IS community as a valuable method for scientific inquiry. By discussing role of data reuse in reference disciplines and showing how secondary analysis is understood within the IS, we argue that there is a need and great opportunity for reanalysis data originating from design experiments as a form of evaluation. With thin in mind, we provide guidance for conducting such analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Albert, T.C., et al.: GIST: A model for design and management of content and interactivity of customer-centric web sites. MIS Q., 161–182 (2004)

    Google Scholar 

  2. Arzberger, P.W., et al.: Promoting Access to Public Research Data for Scientific, Economic, and Social Development. Data Sci. J. 3(29), 135–152 (2004)

    Article  Google Scholar 

  3. Ayanso, A., Lertwachara, K., Vachon, F.: Design and behavioral science research in premier IS journals: Evidence from database management research. In: Jain, H., Sinha, A.P., Vitharana, P., et al. (eds.) DESRIST 2011. LNCS, vol. 6629, pp. 138–152. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  4. Brereton, P., et al.: Lessons from applying the systematic literature review process within the software engineering domain. J. Syst. Softw. 80(4), 571–583 (2007)

    Article  Google Scholar 

  5. Briggs, R.O., Schwabe, G.: On Expanding the Scope of Design Science in IS Research. In: Jain, H., Sinha, A.P., Vitharana, P. (eds.) DESRIST 2011. LNCS, vol. 6629, pp. 92–106. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Bryant, F.B., Wortman, P.M.: Secondary analysis: The case for data archives. Am. Psychol. 33(4), 381–387 (1978)

    Article  Google Scholar 

  7. Bryman, A.: Social Research Methods. Oxford University Press (2012)

    Google Scholar 

  8. Chalmers, I., et al.: Getting to grips with Archie Cochrane’s agenda. BMJ 305(6857), 786–788 (1992)

    Article  Google Scholar 

  9. Church, R.M.: The Effective Use of Secondary Data. Learn. Motiv. 33(1), 32–45 (2002)

    Article  Google Scholar 

  10. Cochrane, A.L.: Effectiveness and efficiency: Random reflections on health services. Nuffield Provincial Hospitals Trust, London (1972)

    Google Scholar 

  11. Cochrane Library: The Cochrane Library 2013 Impact Factor and usage report. Cochrane Library (2013)

    Google Scholar 

  12. Cornwall, A., Jewkes, R.: What is participatory research? Soc. Sci. Med. 41(12), 1667–1676 (1995)

    Article  Google Scholar 

  13. Cronholm, S., Göbel, H.: The Need for Empirical Grounding of Design Science Research Methodology. In: Intl. Works. on IT Artefact Design & Workpractices Impr., Friedrichshafen, Germany (2014)

    Google Scholar 

  14. Devine, P.: Secondary Data Analysis. In: The A-Z of Social Research. SAGE (2003)

    Google Scholar 

  15. Dhar, V.: Data science and prediction. Commun. ACM. 56(12), 64–73 (2013)

    Article  Google Scholar 

  16. Donnellan, M.B., Lucas, R.E.: Secondary analysis of datasets in multicultural research. In: Leong, F.T.L., et al. (eds.) APA Handbook of Multicultural Psychology, Vol. 1: Theory and Research, pp. 161–175. American Psychological Association, Washington, DC (2014)

    Chapter  Google Scholar 

  17. Ebrahim, S., et al.: Reanalyses of Randomized Clinical Trial Data. JAMA 312(10), 1024 (2014)

    Article  Google Scholar 

  18. Glass, G.V.: Primary, Secondary, and Meta-Analysis of Research. Educ. Res. 5(10), 3–8 (1976)

    Article  Google Scholar 

  19. Goes, P.B.: Design Science Research in Top Information Systems Journals. MIS Q. 38(1), iii–viii (2014)

    Google Scholar 

  20. Gregor, S., et al.: Reflection, Abstraction And Theorizing In Design And Development Research. In: Proc. ECIS (2013)

    Google Scholar 

  21. Gregor, S.: The nature of theory in information systems. MIS Q., 611–642 (2006)

    Google Scholar 

  22. Gregor, S., Hevner, A.: Positioning and Presenting Design Science Research for Maximum Impact. Manag. Inf. Syst. Q. 37(2), 337–355 (2013)

    Google Scholar 

  23. Hand, D.J.: Data mining: statistics and more? Am. Stat. 52(2), 112–118 (1998)

    MathSciNet  Google Scholar 

  24. Heaton, J.: Reworking qualitative data. SAGE, London (2004)

    Google Scholar 

  25. Heaton, J.: Secondary Analysis of Qualitative Data. In: The A-Z of Social Research. SAGE (2003)

    Google Scholar 

  26. Heaton, J.: Secondary Analysis of Qualitative Data: An Overview. Historical Social Research 33(3), 33–45 (2008)

    MathSciNet  Google Scholar 

  27. Heinrich, P., et al.: Enabling relationship building in tabletop-supported advisory settings. Presented at the (2014)

    Google Scholar 

  28. Hevner, A., Chatterjee, S.: Design Science Research in Information Systems. In: Design Research in Information Systems, pp. 9–22. Springer US, Boston (2010)

    Chapter  Google Scholar 

  29. Hevner, A.R., et al.: Design Science in Information Systems Research. MIS Q. 28(1), 75–105 (2004)

    Google Scholar 

  30. Hevner, A.R.: The three cycle view of design science research. Scand. J. Inf. Syst. 19(2), 87 (2007)

    Google Scholar 

  31. Higgins, J.P.T., Green, S. (eds.): Cochrane handbook for systematic reviews of interventions. Wiley-Blackwell, Chichester (2008)

    Google Scholar 

  32. Hinde, A.: Secondary analysis. In: Graham, A., Skinner, C. (eds.) Handbook for Research Students in the Social Sciences, p. 205. Falmer Press (1991)

    Google Scholar 

  33. Iivari, J.: Twelve Theses on Design Science Research in Information Systems. In: Design Research in Information Systems, pp. 43–62. Springer US, Boston (2010)

    Chapter  Google Scholar 

  34. Irwin, S.: Qualitative secondary data analysis: Ethics, epistemology and context. Prog. Dev. Stud. 13(4), 295–306 (2013)

    Article  MathSciNet  Google Scholar 

  35. King, W.R., He, J.: Understanding the role and methods of meta-analysis in IS research. Commun. Assoc. Inf. Syst. 16(1), 32 (2005)

    Google Scholar 

  36. Kjeldskov, J., Paay, J.: Indexical Interaction Design for Context-aware Mobile Computer Systems. In: Proc. Australia Conf. Computer-Human Interaction: Design: Activities, Artefacts and Environments, pp. 71–78. ACM, New York (2006)

    Google Scholar 

  37. Mettler, T., et al.: On the Use of Experiments in Design Science Research: A Proposition of an Evaluation Framework. Commun. AIS 34(1), 223–240 (2014)

    MathSciNet  Google Scholar 

  38. Van Nederpelt, P., Daas, P.: 49 Factors that Influence the Quality of Secondary Data Sources. Statistics Netherlands, The Hague/Heerlen (2012)

    Google Scholar 

  39. Nunamaker Jr., J.F., Briggs, R.O.: Toward a broader vision for Information Systems. ACM Trans. Manag. Inf. Syst. 2(4), 1–12 (2011)

    Article  Google Scholar 

  40. Nussbaumer, P., et al.: “Enforced” vs. “Casual” Transparency – Findings from IT-Supported Financial Advisory Encounters. ACM Trans. Manag. Inf. Syst. 3(2), 11:1–11:19 (2012)

    Google Scholar 

  41. Osei-Bryson, K.-M., Ngwenyama, O.K.: Advances in Research Methods for Information Systems Research - Data Mining, Data Envelopment (2014)

    Google Scholar 

  42. Paay, J., Kjeldskov, J.: Drawing From a Larger Canvas-a Gestalt Perspective on Location-Based Services. In: Proc. ACIS, p. 34 (2006)

    Google Scholar 

  43. Palvia, P., et al.: A profile of information systems research published in Information & Management. Inf. Manage. 44(1), 1–11 (2007)

    Article  Google Scholar 

  44. Palvia, P., et al.: Management information systems research: what’s there in a methodology? Commun. Assoc. Inf. Syst. 11(1), 16 (2003)

    Google Scholar 

  45. Peffers, K., et al.: A Design Science Research Methodology for Information Systems Research. J. Manag. Inf. Syst. 24(3), 45–77 (2007)

    Article  Google Scholar 

  46. Pentland, B.T., Feldman, M.S.: Designing routines: On the folly of designing artifacts, while hoping for patterns of action. Inf. Organ. 18(4), 235–250 (2008)

    Article  Google Scholar 

  47. Pries-Heje, J., et al.: Strategies for Design Science Research Evaluation. In: Proc. ECIS (2008)

    Google Scholar 

  48. Richter, A., Riemer, K.: Malleable End-User Software. Bus. Inf. Syst. Eng. 5(3), 195–197 (2013)

    Article  Google Scholar 

  49. Riedl, R., Rueckel, D.: Historical Development of Research Methods in the Information Systems Discipline. In: Proc. AMCIS (2011)

    Google Scholar 

  50. Riemer, K., Johnston, R.: Artifact or Equipment? Rethinking the Core of IS using Heidegger’s ways of being. In: Proc. ICIS (2011)

    Google Scholar 

  51. Sein, M., et al.: Action design research (2011)

    Google Scholar 

  52. Sonnenberg, C., vom Brocke, J.: Evaluations in the Science of the Artificial – Reconsidering the Build-Evaluate Pattern in Design Science Research. In: Peffers, K., Rothenberger, M., Kuechler, B. (eds.) DESRIST 2012. LNCS, vol. 7286, pp. 381–397. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  53. Stebbins, R.A.: Exploratory research in the social sciences. Sage Publications, Thousand Oaks (2001)

    Google Scholar 

  54. Vartanian, T.P.: Secondary data analysis. Oxford University Press, New York (2011)

    Google Scholar 

  55. Venable, J., Pries-Heje, J., Baskerville, R.: A Comprehensive Framework for Evaluation in Design Science Research. In: Peffers, K., Rothenberger, M., Kuechler, B., et al. (eds.) DESRIST 2012. LNCS, vol. 7286, pp. 423–438. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  56. Venable, J., et al.: FEDS: A Framework for Evaluation in Design Science Research. Eur. J. Inf. Syst. (2014)

    Google Scholar 

  57. Venkatesh, V., et al.: Bridging the qualitative-quantitative divide: Guidelines for conducting mixed methods research in information systems. MIS Q. 37(1), 21–54 (2013)

    MathSciNet  Google Scholar 

  58. Wertheimer, M., et al.: Gestaltpsychologie. Einfuhrung Neuere Psychol. AW Zickfeldt Osterwieck Am Harz (1927)

    Google Scholar 

  59. Whyte, W.F.E.: Participatory action research. Sage Publications, Inc. (1991)

    Google Scholar 

  60. Wrobel, S.: An algorithm for multi-relational discovery of subgroups. In: Komorowski, J., Żytkow, J.M. (eds.) PKDD 1997. LNCS, vol. 1263, pp. 78–87. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mateusz Dolata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Dolata, M., Kilic, M., Schwabe, G. (2015). Unpacking the Artifact Knowledge: Secondary Data Analysis in Design Science Research. In: Donnellan, B., Helfert, M., Kenneally, J., VanderMeer, D., Rothenberger, M., Winter, R. (eds) New Horizons in Design Science: Broadening the Research Agenda. DESRIST 2015. Lecture Notes in Computer Science(), vol 9073. Springer, Cham. https://doi.org/10.1007/978-3-319-18714-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18714-3_21

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18713-6

  • Online ISBN: 978-3-319-18714-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics