iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-319-18473-9_4
A Models Comparison to Estimate Commuting Trips Based on Mobile Phone Data | SpringerLink
Skip to main content

A Models Comparison to Estimate Commuting Trips Based on Mobile Phone Data

  • Conference paper
Software Engineering in Intelligent Systems

Abstract

Upon an overall human mobility behavior within the city of Rio de Janeiro, this paper describes a methodology to predict commuting trips based on the mobile phone data. This study is based on the mobile phone data provided by one of the largest mobile carriers in Brazil. Mobile phone data comprises a reasonable variety of information about subscribers’ usage, including time and location of call activities throughout urban areas. This information was used to build subscribers’ trajectories, describing then the most relevant characteristics of commuting over time. An Origin-Destination (O-D) matrix was built to support the estimation for the number of commuting trips. Traditional approaches inherited from transportation systems, such as gravity and radiation models – commonly employed to predict the number of trips between locations(regularly upon large geographic scales) – are compared to statistical and data mining techniques such as linear regression, decision tree and artificial neural network. A comparison of these models shows that data mining models may perform slightly better than the traditional approaches from transportation systems when historical information are available. In addition to that, data mining models may be more stable for great variances in terms of the number of trips between locations and upon different geographic scales. Gravity and radiation models work very well based on large geographic scales and they hold a great advantage, they are much easier to be implemented. On the other hand, data mining models offer more flexibility in incorporating additional attributes about locations – such as number of job positions, available entertainments, schools and universities posts, among others –and historical information about the trips over time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. González, M., Hidalgo, C., Barabási, A.: Understanding individual human mobility patterns. Nature 453, 779–782 (2008)

    Article  Google Scholar 

  2. Simini, F., González, M., Maritan, A., Barabási, A.-L.: A universal model for mobility and migration patterns. Nature 484, 96–100 (2012)

    Article  Google Scholar 

  3. Rubio, A., Sanchez, A., Martinez, E.: Adaptive non-parametric identification of dense areas using cell phone records for urban analysis. Engineering Applications of Artificial Intelligence 26, 551–563 (2013)

    Article  Google Scholar 

  4. Liu, F., Janssens, D., Wets, G., Cools, M.: Annotating mobile phone location data with activity purposes using machine learning algorithms. Expert Systems with Applications 40(8), 3299–3311 (2013)

    Article  Google Scholar 

  5. Candia, J., González, M., Wang, P., Schoenharl, T., Madey, G., Barabasi, A.-L.: Uncovering individual and collective human dynamics from mobile phone records. Journal of Physics A: Mathematical and Theoretical 41(224015) (2008)

    Google Scholar 

  6. Schneider, C., Belik, V., Couronné, T., Smoreda, Z., González, M.: Unraveling daily human mobility motifs. Journal of The Royal Society Interface 10(84), 20130246 (2013)

    Article  Google Scholar 

  7. Yan, X.-Y., Zhao, C., Fan, Y., Di, Z., Wang, W.-X.: Universal predictability of mobility patterns in cities. Physics and Society, arXiv:1307.7502 (2013)

    Google Scholar 

  8. Park, J., Lee, D., González, M.: The eigenmode analysis of human motion. Journal of Statistical Mechanics: Theory and Experiment 2010 (2010)

    Google Scholar 

  9. Jiang, S., Fiore, G., Yang, Y., Ferreira, J., Frazzoli, E., González, M.: A review of urban computing for mobile phone traces: current methods, challenges and opportunities. In: Proceedings of the ACM SIGKDD International Workshop on Urban Computing (2013)

    Google Scholar 

  10. Masucci, A., Serras, J., Johanson, A., Batty, M.: Gravity vs radiation model: on the importance of scale and heterogeneity in commuting flows. arXiv:1206.5735 (2012)

    Google Scholar 

  11. Lee, A., Chen, Y.-A., Ip, W.-C.: Mining frequent trajectories patterns in spatial-temporal databases. Information Sciences 179, 2218–2231 (2009)

    Article  MATH  Google Scholar 

  12. Järv, O., Ahas, R., Witlox, F.: Understanding monthly variability in human activity spaces: A twelve-month study using mobile phone call detail records. Transportation Research Part C 38, 122–135 (2014)

    Article  Google Scholar 

  13. Sun, J.B., Yuan, J., Wang, Y., Si, H.B., Shan, X.M.: Exploring space-time structure human mobility in urban space. Physica A 390, 929–942 (2011)

    Article  Google Scholar 

  14. Zong, E., Tan, B., Mo, K., Yang, Q.: User demographics prediction based on mobile data. Pervasive Mobile Computing 9(6), 823–837 (2013)

    Article  Google Scholar 

  15. Makse, H.A., Havlin, S., Stanley, H.E.: Modelling urban growth patterns. Nature 377, 608–612 (1995)

    Article  Google Scholar 

  16. Bettencourt, L.M.A., Lobo, J., Helbing, D., Kühnert, C., West, G.B.: Growth, innovation, scaling, and the pace of life in cities. Proceedings of the National Academy of Sciences of the United States of America 104, 7301–7306 (2007)

    Article  Google Scholar 

  17. Batty, M.: The size, scale, and shape of cities. Science 319, 769–771 (2008)

    Article  Google Scholar 

  18. Becker, R., Cáceres, R., Hanson, K., Isaacman, S., Loth, J.M., Martonosi, M., Rowland, J., Urbanek, S., Varshavsky, A., Volinsky, C.: Human mobility characterization from cellular network data. Communications of the ACM 56(1), 74–82 (2013)

    Article  Google Scholar 

  19. Balcan, D., Colliza, V., Bruno, G., Hu, H., Ramasco, J.J., Vespignani, A.: Multiscale mobility networks and the spatial spreading of infectious diseases. Proceedings of the National Academy of Sciences of the United States of America 106(51), 21484–21489 (2009)

    Article  Google Scholar 

  20. Wang, L., Hu, K., Ku, T., Yan, X.: Mining frequent trajectory pattern based on vague space partition. Knowledge-Based Systems 50, 100–111 (2013)

    Article  Google Scholar 

  21. Bayir, M.-A., Demirbas, M., Eagle, N.: Mobility profiler: A framework for discovering mobility profiles of cell phone users. Pervasive and Mobile Computing 6(4), 435–454 (2010)

    Article  Google Scholar 

  22. Lin, M., Hsu, W.-J.: Mining GPS data for mobility patterns: A survey. Pervasive and Mobile Computing (Available online July 8, 2013)

    Google Scholar 

  23. Koenker, R.: Quantile Regression. Cambridge University Press (2005)

    Google Scholar 

  24. Andersen, R.: Modern Methods for Robust Regression. Sage University Paper Series on Quantitative Applications in the Social Sciences, 07-152 (2008)

    Google Scholar 

  25. Howard, R.-A.: The Foundations of Decision Analysis. IEEE Transactions on System Science and Cybernetics SSC–4(3), 211–219 (1968)

    Article  Google Scholar 

  26. Bishop, C.-M.: Neural Networks for Pattern Recognition. Oxford University Press (1995)

    Google Scholar 

  27. Sarle, W.S.: Cubic Clustering Criterion. SAS Technical Report, vol. 108 (1983)

    Google Scholar 

  28. Ward, J.H.: Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association 58, 236–244 (1963)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos A. R. Pinheiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Pinheiro, C.A.R., Van Vlasselaer, V., Baesens, B., Evsukoff, A.G., Silva, M.A.H.B., Ebecken, N.F.F. (2015). A Models Comparison to Estimate Commuting Trips Based on Mobile Phone Data. In: Silhavy, R., Senkerik, R., Oplatkova, Z., Prokopova, Z., Silhavy, P. (eds) Software Engineering in Intelligent Systems. Advances in Intelligent Systems and Computing, vol 349. Springer, Cham. https://doi.org/10.1007/978-3-319-18473-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18473-9_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18472-2

  • Online ISBN: 978-3-319-18473-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics