iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-319-18461-6_54
Infinite Dimensional Optimization Models and PDEs for Dejittering | SpringerLink
Skip to main content

Infinite Dimensional Optimization Models and PDEs for Dejittering

  • Conference paper
  • First Online:
Scale Space and Variational Methods in Computer Vision (SSVM 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9087))

Abstract

In this paper we do a systematic investigation of continuous methods for pixel, line pixel and line dejittering. The basis for these investigations are the discrete line dejittering algorithm of Nikolova and the partial differential equation of Lenzen et al for pixel dejittering. To put these two different worlds in perspective we find infinite dimensional optimization algorithms linking to the finite dimensional optimization problems and formal flows associated with the infinite dimensional optimization problems. Two different kinds of optimization problems will be considered: Dejittering algorithms for determining the displacement and displacement error correction formulations, which correct the jittered image, without estimating the jitter. As a by-product we find novel variational methods for displacement error regularization and unify them into one family. The second novelty is a comprehensive comparison of the different models for different types of jitter, in terms of efficiency of reconstruction and numerical complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of inverse problems. Mathematics and its Applications, vol. 375. Kluwer Academic Publishers Group, Dordrecht (1996)

    Book  MATH  Google Scholar 

  2. Figueiredo, M.A.T., Dias, J.B., Oliveira, J.P., et al.: On total variation denoising: A new majorization-minimization algorithm and an experimental comparisonwith wavalet denoising. In: IEEE International Conference on Image Processing, pp. 2633–2636. IEEE (2006)

    Google Scholar 

  3. Grasmair, M., Lenzen, F., Obereder, A., Scherzer, O., Fuchs, M.: A non-convex PDE scale space. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds.) Scale-Space 2005. LNCS, vol. 3459, pp. 303–315. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Groetsch, C.W.: The Theory of Tikhonov Regularization for Fredholm Equations of the First Kind. Pitman, Boston (1984)

    MATH  Google Scholar 

  5. Groetsch, C.W.: Inverse Problems. Mathematical Association of America, Washington, DC (1999). Activities for undergraduates

    MATH  Google Scholar 

  6. Kang, S.H., Shen, J.: Video dejittering by bake and shake. Image Vision Comput. 24(2), 143–152 (2006)

    Article  Google Scholar 

  7. Kang, S.H., Shen, J.: Image dejittering based on slicing moments. In: Tai, X.C., Lie, K.A., Chan, T.F., Osher, S. (eds.) Image Processing Based on Partial Differential Equations. Mathematics and Visualization. Springer, New York (2007)

    Google Scholar 

  8. Lenzen, F., Scherzer, O.: A geometric pde for interpolation of \(m\)-channel data. In: Tai, X.C., Knut, M., Marius, L., Knut-Andreas, L. (eds.) SSVM 2009. LNCS, vol. 5567, pp. 413–425. Springer-Verlag, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Lenzen, F., Scherzer, O.: Partial differential equations for zooming, deinterlacing and dejittering. Int. J. Comput. Vision 92(2), 162–176 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Morozov, V.A.: Methods for Solving Incorrectly Posed Problems. Springer Verlag, New York (1984)

    Book  Google Scholar 

  11. Morozov, V.A.: Regularization Methods for Ill-Posed Problems. CRC Press, Boca Raton (1993)

    MATH  Google Scholar 

  12. Ndajah, P., Kikuchi, H., Yukawa, M., Watanabe, H., et al.: An investigation on the quality of denoised images. Int. J. Circ. Syst. Sign. Proc. 5, 423–434 (2011)

    Google Scholar 

  13. Nikolova, M.: Fast dejittering for digital video frames. In: Tai, X.C., Knut, M., Marius, L., Knut-Andreas, L. (eds.) SSVM 2009. LNCS, pp. 439–451. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Nikolova, M.: One-iteration dejittering of digital video images. J. Vis. Commun. Image Represent. 20, 254–274 (2009)

    Article  Google Scholar 

  15. Scherzer, O.: Explicit versus implicit relative error regularization on the space of functions of bounded variation. In: Nashed, M.Z., Scherzer, O. (eds.) Inverse Problems, Image Analysis, and Medical Imaging. Contemporary Mathematics, vol. 313, pp. 171–198. AMC, Providence (2002)

    Chapter  Google Scholar 

  16. Scherzer, O.: Scale space methods for denoising and inverse problem. Adv. Imaging Electron Phys. 128, 445–530 (2003)

    Article  Google Scholar 

  17. Scherzer, O., Grasmair, M., Grossauer, H., Haltmeier, M., Lenzen, F.: Variational methods in imaging. Applied Mathematical Sciences, vol. 167. Springer, New York (2009)

    MATH  Google Scholar 

  18. Shen, J.: Bayesian video dejittering by bv image model. SIAM J. Appl. Math. 64(5), 1691–1708 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. Tikhonov, A.N., Arsenin, V.Y.: Solutions of Ill-Posed Problems. John Wiley & Sons, Washington, D.C. (1977)

    MATH  Google Scholar 

  20. Tikhonov, A.N., Goncharsky, A., Stepanov, V., Yagola, A.: Numerical Methods for the Solution of Ill-Posed Problems. Kluwer, Dordrecht (1995)

    Book  MATH  Google Scholar 

  21. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aniello Raffaele Patrone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Dong, G., Patrone, A.R., Scherzer, O., Öktem, O. (2015). Infinite Dimensional Optimization Models and PDEs for Dejittering. In: Aujol, JF., Nikolova, M., Papadakis, N. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2015. Lecture Notes in Computer Science(), vol 9087. Springer, Cham. https://doi.org/10.1007/978-3-319-18461-6_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18461-6_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18460-9

  • Online ISBN: 978-3-319-18461-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics