Abstract
OpenMP is one of the most widely used standards for enabling thread-level parallelism in high performance computing codes. The recently released version 4.0 of the specification introduces directives that enable application developers to offload portions of the computation to massively-parallel target devices. However, to efficiently utilize these devices, sophisticated performance analysis tools are required. The emerging OpenMP Tools Interface (OMPT) aids the development of portable tools, but currently lacks the support for OpenMP 4.0 target directives. This paper presents a novel approach to measure the performance of applications utilizing OpenMP offloading. It introduces libmpti, an OMPT-based measurement library for Intel MIC target devices. For host-side analysis we extended the OPARI2 instrumenter and prototypically integrated the complete approach into the state-of-the-art tool infrastructure Score-P. We demonstrate the effectiveness of the presented method and implementation with a Conjugate-Gradient (CG) kernel on an Intel Xeon Phi coprocessor. Finally, we visualize the obtained performance data with Vampir.
Chapter PDF
Similar content being viewed by others
References
Mellor-Crummey, J., et al.: OMPT support branch of the open source Intel OpenMP runtime library (December 2013), http://intel-openmp-rtl.googlecode.com/svn/branches/ompt-support
Eichenberger, A., Mellor-Crummey, J., Schulz, M., Copty, N., Cownie, J., Dietrich, R., Liu, X., Loh, E., Lorenz, D.: OpenMP Technical Report 2 on the OMPT Interface (March 2014)
Geimer, M., Wolf, F., Wylie, B.J.N., Erika Abraham, D.B., Mohr, B.: The Scalasca performance toolset architecture. Concurrency and Computation: Practice and Experience 22(6), 702–719 (2010)
Knüpfer, A., Brunst, H., Doleschal, J., Jurenz, M., Lieber, M., Mickler, H., Müller, M.S., Nagel, W.E.: The Vampir Performance Analysis Tool-Set. In: Resch, M., Keller, R., Himmler, V., Krammer, B., Schulz, A. (eds.) ”Tools for High Performance Computing”, Proceedings of the 2nd International Workshop on Parallel Tools for High Performance Computing. Springer, Stuttgart (2008)
Liu, X., Mellor-Crummey, J., Fagan, M.: A new approach for performance analysis of OpenMP programs. In: Proceedings of the 27th International ACM Conference on International Conference on Supercomputing, pp. 69–80. ACM (2013)
Mey, D., Biersdorf, S., Bischof, C., Diethelm, K., Eschweiler, D., Gerndt, M., Knüpfer, A., Lorenz, D., Malony, A., Nagel, W.E., Oleynik, Y., Rössel, C., Saviankou, P., Schmidl, D., Shende, S., Wagner, M., Wesarg, B., Wolf, F.: Score-P: A Unified Performance Measurement System for Petascale Applications. In: Bischof, C., Hegering, H.G., Nagel, W.E., Wittum, G. (eds.) Competence in High Performance Computing 2010, pp. 85–97. Springer (2012)
Mohr, B., Malony, A.D., Shende, S., Wolf, F.: Design and Prototype of a Performance Tool Interface for OpenMP. The Journal of Supercomputing 23(1), 105–128 (2002)
NVIDIA: CUDA Toolkit Documentation — CUPTI (July 2013), http://docs.nvidia.com/cuda/cupti/index.html
OpenMP Architecture Review Board: OpenMP application program interface version 4.0 (July 2013), http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
Wylie, B.J., Frings, W.: Scalasca support for MPI+OpenMP parallel applications on large-scale HPC systems based on Intel Xeon Phi. In: Proceedings of the Conference on Extreme Science and Engineering Discovery Environment: Gateway to Discovery, p. 37. ACM (2013)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Dietrich, R., Schmitt, F., Grund, A., Schmidl, D. (2014). Performance Measurement for the OpenMP 4.0 Offloading Model. In: Lopes, L., et al. Euro-Par 2014: Parallel Processing Workshops. Euro-Par 2014. Lecture Notes in Computer Science, vol 8806. Springer, Cham. https://doi.org/10.1007/978-3-319-14313-2_25
Download citation
DOI: https://doi.org/10.1007/978-3-319-14313-2_25
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-14312-5
Online ISBN: 978-3-319-14313-2
eBook Packages: Computer ScienceComputer Science (R0)