Abstract
The Large Time Frequency Analysis Toolbox (LTFAT) is a modern Octave/Matlab toolbox for time-frequency analysis, synthesis, coefficient manipulation and visualization. It’s purpose is to serve as a tool for achieving new scientific developments as well as an educational tool. The present paper introduces main features of the second major release of the toolbox which includes: generalizations of the Gabor transform, the wavelets module, the frames framework and the real-time block processing framework.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The toolbox does a zero padding implicitly.
References
Balan, R., Casazza, P., Edidin, D.: On signal reconstruction without phase. Appl. Comput. Harmon. Anal. 20(3), 345–356 (2006)
Balazs, P.: Frames and finite dimensionality: frame transformation, classification and algorithms. Appl. Math. Sci. 2(41–44), 2131–2144 (2008)
Balazs, P., Dörfler, M., Kowalski, M., Torrésani, B.: Adapted and adaptive linear time-frequency representations: a synthesis point of view. IEEE Signal Process. Mag. (Special Issue: Time-Freq. Anal. Appl.) 30(6), 20–31 (2013)
Balazs, P.: Basic definition and properties of Bessel multipliers. J. Math. Anal. Appl. 325(1), 571–585 (2007). http://dx.doi.org/10.1016/j.jmaa.2006.02.012
Balazs, P., Dörfler, M., Jaillet, F., Holighaus, N., Velasco, G.A.: Theory, implementation and applications of nonstationary Gabor frames. J. Comput. Appl. Math. 236(6), 1481–1496 (2011). http://ltfat.sourceforge.net/notes/ltfatnote018.pdf
Balazs, P., Feichtinger, H.G., Hampejs, M., Kracher, G.: Double preconditioning for Gabor frames. IEEE Trans. Signal Process. 54(12), 4597–4610 (2006). http://dx.doi.org/10.1109/TSP.2006.882100
Bayram, I., Selesnick, I.W.: On the dual-tree complex wavelet packet and M-band transforms. IEEE Trans. Signal Process. 56(6), 2298–2310 (2008)
Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009). http://dx.doi.org/10.1137/080716542
Bölcskei, H., Hlawatsch, F., Feichtinger, H.G.: Frame-theoretic analysis of oversampled filter banks. IEEE Trans. Signal Process. 46(12), 3256–3268 (2002)
Bultheel, A., Martínez, S.: Computation of the fractional Fourier transform. Appl. Comput. Harmon. Anal. 16(3), 182–202 (2004)
Candan, C., Kutay, M.A., Ozaktas, H.M.: The discrete fractional Fourier transform. IEEE Trans. Signal Process. 48(5), 1329–1337 (2000)
Cohen, L.: Time-frequency distributions-a review. Proc. IEEE 77(7), 941–981 (1989)
Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57, 1413–1457 (2004)
Daubechies, I., Han, B., Ron, A., Shen, Z.: Framelets: MRA-based constructions of wavelet frames. Appl. Comput. Harmon. Anal. 14(1), 1–46 (2003)
Decorsiere, R., Søndergaard, P.L., Buchholz, J., Dau, T.: Modulation filtering using an optimization approach to spectrogram reconstruction. In: Proceedings of Forum Acusticum 2011. European Acoustics Association (2011)
Feichtinger, H.G., Strohmer, T. (eds.): Gabor Analysis and Algorithms. Birkhäuser, Boston (1998)
Flandrin, P.: Time-Frequency/Time-Scale Analysis, Wavelet Analysis and its Applications, vol. 10. Academic Press Inc., San Diego (1999). (with a preface by Yves Meyer, Translated from the French by Joachim Stöckler)
Gauthier, J., Duval, L., Pesquet, J.: Optimization of synthesis oversampled complex filter banks. IEEE Trans. Signal Process. 57(10), 3827–3843 (2009)
Goertzel, G.: An algorithm for the evaluation of finite trigonometric series. Am. Math. Mon. 65(1), 34–35 (1958)
Griffin, D., Lim, J.: Signal estimation from modified short-time Fourier transform. IEEE Trans. Acoust. Speech Signal Process. 32(2), 236–243 (1984)
Gröchenig, K.: Foundations of Time-Frequency Analysis. Birkhäuser, Boston (2001)
Holighaus, N., Dörfler, M., Velasco, G.A., Grill, T.: A framework for invertible, real-time constant-Q transforms. IEEE Trans. Audio Speech Lang. Process. 21(4), 775–785 (2013)
Holschneider, M., Kronland-Martinet, R., Morlet, J., Tchamitchian, P.: A real-time algorithm for signal analysis with the help of the wavelet transform. In: Combes, J.M., Grossmann, A., Tchamitchian, P. (eds.) Wavelets. Time-Frequency Methods and Phase Space, pp. 286–297. Springer, Heidelberg (1989)
Kowalski, M.: Sparse regression using mixed norms. Appl. Comput. Harmon. Anal. 27(3), 303–324 (2009). http://hal.archives-ouvertes.fr/hal-00202904/
Kurth, F., Clausen, M.: Filter bank tree and M-band wavelet packet algorithms in audio signal processing. IEEE Trans. Signal Process. 47(2), 549–554 (1999)
Merry, R., Steinbuch, M., van de Molengraft, M.: Wavelet theory and applications, a literature study. DCT 2005.53 (2005). http://alexandria.tue.nl/repository/books/612762.pdf
Necciari, T., Balazs, P., Holighaus, N.: Søndergaard, P.L.: The ERBlet transform: an auditory-based time-frequency representation with perfect reconstruction. In: Proceedings of the 38th International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2013), pp. 498–502. IEEE, Vancouver, May 2013
Ozaktas, H.M., Zalevsky, Z., Kutay, M.A.: The Fractional Fourier Transform with Applications in Optics and Signal Processing. Wiley, New York (2001)
Perraudin, N., Balazs, P., Sondergaard, P.: A fast Griffin-Lim algorithm. In: 2013 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), pp. 1–4, Oct 2013
Perraudin, N., Holighaus, N., Soendergaard, P., Balazs, P.: Gabor dual windows using convex optimization. In: Proceedings of the 10th International Conference on Sampling Theory and Applications (SAMPTA 2013) (2013)
Perraudin, N., Holighaus, N., Søndergaard, P.L., Balazs, P.: Designing Gabor windows using convex optimization (2014). arXiv:1401.6033
Prelcic, N.G., Márquez, O.W., González, S.: Uvi Wave, the ultimate toolbox for wavelet transforms and filter banks. In: Proceedings of the Fourth Bayona Workshop on Intelligent Methods in Signal Processing and Communications, Bayona, Spain, pp. 224–227 (1996)
Průša, Z.: Segmentwise discrete wavelet transform. Ph.D. thesis, Brno University of Technology, Brno (2012)
Rabiner, L., Schafer, R., Rader, C.: The chirp Z-transform algorithm. IEEE Trans. Audio Electroacoust. 17(2), 86–92 (1969)
Selesnick, I.W.: The double density DWT. In: Petrosian, A.A., Meyer, F.G. (eds.) Wavelets in Signal and Image Analysis, pp. 39–66. Springer, Amsterdam (2001)
Selesnick, I.W.: The double-density dual-tree DWT. IEEE Trans. Signal Process. 52(5), 1304–1314 (2004)
Søndergaard, P.L., Torrésani, B., Balazs, P.: The linear time frequency analysis toolbox. Int. J. Wavelets Multiresolut. Anal. Inf. Process. 10(4), 1250032-1–1250032-27 (2012)
Steffen, P., Heller, P., Gopinath, R., Burrus, C.: Theory of regular M-band wavelet bases. IEEE Trans. Signal Process. 41(12), 3497–3511 (1993)
Stoeva, D.T., Balazs, P.: Invertibility of multipliers. Appl. Comput. Harmon. Anal. 33(2), 292–299 (2012)
Stoeva, D.T., Balazs, P.: Canonical forms of unconditionally convergent multipliers. J. Math. Anal. Appl. 399, 252–259 (2013)
Sysel, P., Rajmic, P.: Goertzel algorithm generalized to non-integer multiples of fundamental frequency. EURASIP J. Adv. Signal Process. 2012(1), 56 (2012)
Taswell, C.: Near-best basis selection algorithms with non-additive information cost functions. In: Proceedings of the IEEE International Symposium on Time-Frequency and Time-Scale Analysis, pp. 13–16. IEEE Press (1994)
Wickerhauser, M.V.: Lectures on wavelet packet algorithms. In: Lecture notes, INRIA (1992)
Wiesmeyr, C., Holighaus, N., Søndergaard, P.L.: Efficient algorithms for discrete Gabor transforms on a nonseparable lattice. IEEE Trans. Signal Process. 61(20), 5131–5142 (2013)
Acknowledgments
The authors would like to thank the people that made contributions to the toolbox: Remi Decorsiere, Monika Dörfler, Nina Engelputzeder, Hans Feichtinger, Thomas Hrycak, Florent Jaillet, A.J.E.M. Janssen, Norbert Kaiblinger, Matthieu Kowalski, Ewa Matusiak, Piotr Majdak, Nathanaël Perraudin, Pavel Rajmic, Thomas Strohmer, Bruno Torrésani, Jordy van Velthoven and Tobias Werther.
We would like to express our gratitude towards authors of the Uvi Wave toolbox [32], from which we have taken some wavelet filters generation routines.
The work on this paper was partly supported by the Austrian Science Fund (FWF) START-project FLAME (‘Frames and Linear Operators for Acoustical Modeling and Parameter Estimation’; Y 551-N13).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Průša, Z., Søndergaard, P.L., Holighaus, N., Wiesmeyr, C., Balazs, P. (2014). The Large Time-Frequency Analysis Toolbox 2.0. In: Aramaki, M., Derrien, O., Kronland-Martinet, R., Ystad, S. (eds) Sound, Music, and Motion. CMMR 2013. Lecture Notes in Computer Science(), vol 8905. Springer, Cham. https://doi.org/10.1007/978-3-319-12976-1_25
Download citation
DOI: https://doi.org/10.1007/978-3-319-12976-1_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-12975-4
Online ISBN: 978-3-319-12976-1
eBook Packages: Computer ScienceComputer Science (R0)