iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-319-10888-9_36
Semantic Clustering of Relations between Named Entities | SpringerLink
Skip to main content

Semantic Clustering of Relations between Named Entities

  • Conference paper
Advances in Natural Language Processing (NLP 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8686))

Included in the following conference series:

Abstract

Most research in Information Extraction concentrates on the extraction of relations from texts but less work has been done about their organization after their extraction. We present in this article a multi-level clustering method to group semantically equivalent relations: a first step groups relation instances with similar expressions to form clusters with high precision; a second step groups these initial clusters into larger semantic clusters using more complex semantic similarities. Experiments demonstrate that our multi-level clustering not only improves the scalability of the method but also improves clustering results by exploiting redundancy in each initial cluster.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Akbik, A., Broß, J.: Extracting semantic relations from natural language text using dependency grammar patterns. In: SemSearch 2009 Workshop (2009)

    Google Scholar 

  2. Banko, M., Cafarella, M.J., Soderland, S., Broadhead, M., Etzioni, O.: Open information extraction from the web. In: IJCAI 2007, pp. 2670–2676 (2007)

    Google Scholar 

  3. Bayardo, R.J., Ma, Y., Srikant, R.: Scaling up all pairs similarity search. In: WWW 2007, pp. 131–140 (2007)

    Google Scholar 

  4. Bollegala, D.T., Matsuo, Y., Ishizuka, M.: Relational Duality: Unsupervised Extraction of. Semantic Relations between Entities on the Web. In: WWW 2010, pp. 151–160 (2010)

    Google Scholar 

  5. Dolan, B., Quirk, C., Brockett, C.: Unsupervised construction of large paraphrase corpora: exploiting massively parallel news sources. In: COLING 2004, pp. 350–356 (2004)

    Google Scholar 

  6. Dongen, S.V.: Graph Clustering by Flow Simulation. Ph.D. thesis, University of Utrecht (2000)

    Google Scholar 

  7. Eichler, K., Hemsen, H., Neumann, G.: Unsupervised relation extraction from web documents. In: LREC 2008, pp. 1674–1679 (2008)

    Google Scholar 

  8. Ertöz, L., Steinbach, M., Kumar, V.: A New Shared Nearest Neighbor Clustering Algorithm and its Applications. In: Workshop on Clustering High Dimensional Data and its Applications of SIAM ICDM 2002, pp. 105–115 (2002)

    Google Scholar 

  9. Fader, A., Soderland, S., Etzioni, O.: Identifying relations for open information extraction. In: EMNLP 2011, pp. 1535–1545 (2011)

    Google Scholar 

  10. Ferret, O.: Testing Semantic Similarity Measures for Extracting Synonyms from a Corpus. In: LREC 2010, pp. 3338–3343 (2010)

    Google Scholar 

  11. Gamallo, P., Garcia, M., Fernández-Lanza, S.: Dependency-Based Open Information Extraction. In: Joint Workshop on Unsupervised and Semi-Supervised Learning in NLP, pp. 10–18 (2012)

    Google Scholar 

  12. Hasegawa, T., Sekine, S., Grishman, R.: Discovering relations among named entities from large corpora. In: ACL 2004, pp. 415–422 (2004)

    Google Scholar 

  13. Heylen, K., Peirsmany, Y., Geeraerts, D., Speelman, D.: Modelling Word Similarity: An Evaluation of Automatic Synonymy Extraction Algorithms. In: LREC 2008, pp. 3243–3249 (2008)

    Google Scholar 

  14. Kok, S., Domingos, P.: Extracting semantic networks from text via relational clustering. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008, Part I. LNCS (LNAI), vol. 5211, pp. 624–639. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  15. Lin, D.: An Information-Theoretic Definition of Similarity. In: ICML 1998, pp. 296–304 (1998)

    Google Scholar 

  16. Mausam, S.M., Soderland, S., Bart, R., Etzioni, O.: Open language learning for information extraction. In: EMNLP-CoNLL 2012, pp. 523–534 (2012)

    Google Scholar 

  17. Mihalcea, R., Corley, C., Strapparava, C.: Corpus-based and knowledge-based measures of text semantic similarity. In: AAAI 2006, pp. 775–780 (2006)

    Google Scholar 

  18. Min, B., Shi, S., Grishman, R., Lin, C.Y.: Ensemble Semantics for Large-scale Unsupervised Relation Extraction. In: EMNLP 2012, pp. 1027–1037 (2012)

    Google Scholar 

  19. Moro, A., Navigli, R.: Integrating syntactic and semantic analysis into the open information extraction paradigm. In: IJCAI 2013, pp. 2148–2154 (2013)

    Google Scholar 

  20. Pedersen, T., Patwardhan, S., Michelizzi, J.: WordNet:Similarity Measuring the Relatedness of Concepts. In: HLT-NAACL 2004: Demonstrations, pp. 38–41 (2004)

    Google Scholar 

  21. Rink, B., Harabagiu, S.: A generative model for unsupervised discovery of relations and argument classes from clinical texts. In: EMNLP 2011, pp. 519–528 (2011)

    Google Scholar 

  22. Rozenfeld, B., Feldman, R.: High-Performance Unsupervised Relation Extraction from Large Corpora. In: ICDM 2006. pp. 1032–1037 (2006)

    Google Scholar 

  23. Sekine, S.: On-Demand Information Extraction. In: COLING-ACL 2006, pp. 731–738 (2006)

    Google Scholar 

  24. Wang, W., Besançon, R., Ferret, O., Grau, B.: Filtering and Clustering Relations for Unsupervised Information Extraction in Open Domain. In: CIKM 2011, pp. 1405–1414 (2011)

    Google Scholar 

  25. Wang, W., Besançon, R., Ferret, O., Grau, B.: Evaluation of unsupervised information extraction. In: LREC 2012, pp. 552–558 (2012)

    Google Scholar 

  26. Wu, Z., Palmer, M.: Verbs semantics and lexical selection. In: ACL 1994, pp. 133–138 (1994)

    Google Scholar 

  27. Yao, L., Haghighi, A., Riedel, S., McCallum, A.: Structured relation discovery using generative models. In: EMNLP 2011, pp. 1456–1466 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Wang, W., Besançon, R., Ferret, O., Grau, B. (2014). Semantic Clustering of Relations between Named Entities. In: Przepiórkowski, A., Ogrodniczuk, M. (eds) Advances in Natural Language Processing. NLP 2014. Lecture Notes in Computer Science(), vol 8686. Springer, Cham. https://doi.org/10.1007/978-3-319-10888-9_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10888-9_36

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10887-2

  • Online ISBN: 978-3-319-10888-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics