Abstract
We show that probabilistic computable functions, i.e., those functions outputting distributions and computed by probabilistic Turing machines, can be characterized by a natural generalization of Church and Kleene’s partial recursive functions. The obtained algebra, following Leivant, can be restricted so as to capture the notion of polytime sampleable distributions, a key concept in average-case complexity and cryptography.
This work is partially supported by the ANR project 12IS02001 PACE.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bellantoni, S., Cook, S.: A new recursion-theoretic characterization of the polytime functions. Computational Complexity 2(2), 97–110 (1992)
Bogdanov, A., Trevisan, L.: Average-case complexity. Foundations and Trends in Theoretical Computer Science 2(1) (2006)
Dal Lago, U., Parisen Toldin, P.: A higher-order characterization of probabilistic polynomial time. In: Peña, R., van Eekelen, M., Shkaravska, O. (eds.) FOPARA 2011. LNCS, vol. 7177, pp. 1–18. Springer, Heidelberg (2012)
Dal Lago, U., Zuppiroli, S.: Probabilistic recursion theory and implicit computational complexity (long version) (2014), http://arxiv.org/abs/1406.3378
De Leeuw, K., Moore, E.F., Shannon, C.E., Shapiro, N.: Computability by probabilistic machines. Automata Studies 34, 183–198 (1956)
Gill, J.: Computational complexity of probabilistic Turing machines. SIAM Journal on Computing 6(4), 675–695 (1977)
Girard, J.-Y.: Light linear logic. Inf. Comput. 143(2), 175–204 (1998)
Goldreich, O.: Foundations of Cryptography: Basic Tools. Cambridge University Press (2000)
Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and System Sciences 28(2), 270–299 (1984)
Katz, J., Lindell, Y.: Introduction to Modern Cryptography. Chapman & Hall/Crc Cryptography and Network Security Series. Chapman & Hall/CRC (2007)
Kleene, S.C.: General recursive functions of natural numbers. Mathematische Annalen 112(1), 727–742 (1936)
Leivant, D.: Ramified recurrence and computational complexity I: Word recurrence and poly-time. In: Feasible Mathematics II, pp. 320–343. Springer (1995)
Leivant, D., Marion, J.-Y.: Lambda calculus characterizations of poly-time. Fundam. Inform. 19(1/2), 167–184 (1993)
Rabin, M.O.: Probabilistic automata. Information and Control 6(3), 230–245 (1963)
Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res. Dev. 3(2), 114–125 (1959)
Santos, E.S.: Probabilistic Turing machines and computability. Proceedings of the American Mathematical Society 22(3), 704–710 (1969)
Santos, E.S.: Computability by probabilistic turing machines. Transactions of the American Mathematical Society 159, 165–184 (1971)
Soare, R.I.: Recursively enumerable sets and degrees: a study of computable functions and computably generated sets. Perspectives in mathematical logic. Springer (1987)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Dal Lago, U., Zuppiroli, S. (2014). Probabilistic Recursion Theory and Implicit Computational Complexity. In: Ciobanu, G., Méry, D. (eds) Theoretical Aspects of Computing – ICTAC 2014. ICTAC 2014. Lecture Notes in Computer Science, vol 8687. Springer, Cham. https://doi.org/10.1007/978-3-319-10882-7_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-10882-7_7
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-10881-0
Online ISBN: 978-3-319-10882-7
eBook Packages: Computer ScienceComputer Science (R0)