Abstract
We work within the recent paradigm, started by Groth (ASIACRYPT 2010), of constructing short non-interactive zero knowledge arguments from a small number basic arguments in a modular fashion. The main technical result of this paper is a new permutation argument, by using product and shift arguments of Lipmaa (2014) and a parallelizable variant of the Beneš network. We use it to design a short non-interactive zero knowledge argument for the NP-complete language CircuitSAT with Θ(n log2 n) prover’s computational complexity, where n is the size of the circuit. The permutation argument can be naturally used to design direct NIZK arguments for many other NP-complete languages.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abe, M.: Mix-Networks on Permutation Networks. In: Lam, K.-Y., Okamoto, E., Xing, C. (eds.) ASIACRYPT 1999. LNCS, vol. 1716, pp. 258–273. Springer, Heidelberg (1999)
Abe, M., Hoshino, F.: Remarks on Mix-Network Based on Permutation Networks. In: Kim, K.-C. (ed.) PKC 2001. LNCS, vol. 1992, pp. 317–324. Springer, Heidelberg (2001)
Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C: Verifying Program Executions Succinctly and in Zero Knowledge. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 90–108. Springer, Heidelberg (2013)
Beneš, V.E.: Mathematical Theory of Connecting Networks and Telephone Traffic. Academic Press (August 28, 1965)
Bitansky, N., Chiesa, A., Ishai, Y., Ostrovsky, R., Paneth, O.: Succinct Non-interactive Arguments via Linear Interactive Proofs. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 315–333. Springer, Heidelberg (2013)
Blelloch, G.: Vector Models for Data-Parallel Computing. MIT Press (1990)
Blum, M., Feldman, P., Micali, S.: Non-Interactive Zero-Knowledge and Its Applications. In: STOC 1988, pp. 103–112. ACM Press (1988)
Chaabouni, R., Lipmaa, H., Zhang, B.: A Non-Interactive Range Proof with Constant Communication. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 179–199. Springer, Heidelberg (2012)
Clos, C.: A Study of Non-Blocking Switching Networks. Bell System Technical Journal 32(2), 406–424 (1953)
Damgård, I.: Towards Practical Public Key Systems Secure against Chosen Ciphertext Attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 445–456. Springer, Heidelberg (1992)
Di Crescenzo, G., Lipmaa, H.: Succinct NP Proofs from an Extractability Assumption. In: Beckmann, A., Dimitracopoulos, C., Löwe, B. (eds.) CiE 2008. LNCS, vol. 5028, pp. 175–185. Springer, Heidelberg (2008)
Fauzi, P., Lipmaa, H., Zhang, B.: Efficient Modular NIZK Arguments from Shift and Product. In: Abdalla, M., Nita-Rotaru, C., Dahab, R. (eds.) CANS 2013. LNCS, vol. 8257, pp. 92–121. Springer, Heidelberg (2013)
Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic Span Programs and Succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013)
Goldwasser, S., Micali, S., Rackoff, C.: The Knowledge Complexity of Interactive Proof-Systems. In: Sedgewick, R. (ed.) STOC 1985, pp. 291–304. ACM Press (1985)
Golle, P., Jarecki, S., Mironov, I.: Cryptographic Primitives Enforcing Communication and Storage Complexity. In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 120–135. Springer, Heidelberg (2003)
Groth, J.: Short Pairing-Based Non-interactive Zero-Knowledge Arguments. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg (2010)
Groth, J., Lu, S.: A Non-interactive Shuffle with Pairing Based Verifiability. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 51–67. Springer, Heidelberg (2007)
Hwang, F.K.M.: The Mathematical Theory of Nonblocking Switching Networks, 2nd edn. Series on Applied Mathematics, vol. 15. World Scientific Publishing Co Pte Ltd. (October 1, 2004)
Lipmaa, H.: Progression-Free Sets and Sublinear Pairing-Based Non-Interactive Zero-Knowledge Arguments. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 169–189. Springer, Heidelberg (2012)
Lipmaa, H.: Succinct Non-Interactive Zero Knowledge Arguments from Span Programs and Linear Error-Correcting Codes. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 41–60. Springer, Heidelberg (2013)
Lipmaa, H.: Almost Optimal Short Adaptive Non-Interactive Zero Knowledge. Tech. Rep. 2014/396, International Association for Cryptologic Research (2014), http://eprint.iacr.org/2014/396
Lipmaa, H., Zhang, B.: A More Efficient Computationally Sound Non-Interactive Zero-Knowledge Shuffle Argument. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 477–502. Springer, Heidelberg (2012)
Nassimi, D., Sahni, S.: Parallel Algorithms to Set Up the Benes Permutation Network. IEEE Trans. Computers 31(2), 148–154 (1982)
Opferman, D.C., Tsao-Wu, N.T.: On a Class of Rearrangeable Switching Networks. Part I: Control Algorithm. Bell System Technical Journal 50(5), 1579–1600 (1971)
Pippenger, N.: On the Evaluation of Powers and Monomials. SIAM J. Comput. 9(2), 230–250 (1980)
Pratt, V.R., Stockmeyer, L.J.: A Characterization of the Power of Vector Machines. Journal of Computer and System Sciences 12(2), 198–221 (1976)
Straus, E.G.: Addition Chains of Vectors. American Mathematical Monthly 70, 806–808 (1964)
Waksman, A.: A Permutation Network. Journal of the ACM 15(1), 159–163 (1968)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Lipmaa, H. (2014). Efficient NIZK Arguments via Parallel Verification of Benes Networks. In: Abdalla, M., De Prisco, R. (eds) Security and Cryptography for Networks. SCN 2014. Lecture Notes in Computer Science, vol 8642. Springer, Cham. https://doi.org/10.1007/978-3-319-10879-7_24
Download citation
DOI: https://doi.org/10.1007/978-3-319-10879-7_24
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-10878-0
Online ISBN: 978-3-319-10879-7
eBook Packages: Computer ScienceComputer Science (R0)