iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-319-10879-7_24
Efficient NIZK Arguments via Parallel Verification of Benes Networks | SpringerLink
Skip to main content

Efficient NIZK Arguments via Parallel Verification of Benes Networks

  • Conference paper
Security and Cryptography for Networks (SCN 2014)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 8642))

Included in the following conference series:

Abstract

We work within the recent paradigm, started by Groth (ASIACRYPT 2010), of constructing short non-interactive zero knowledge arguments from a small number basic arguments in a modular fashion. The main technical result of this paper is a new permutation argument, by using product and shift arguments of Lipmaa (2014) and a parallelizable variant of the Beneš network. We use it to design a short non-interactive zero knowledge argument for the NP-complete language CircuitSAT with Θ(n log2 n) prover’s computational complexity, where n is the size of the circuit. The permutation argument can be naturally used to design direct NIZK arguments for many other NP-complete languages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abe, M.: Mix-Networks on Permutation Networks. In: Lam, K.-Y., Okamoto, E., Xing, C. (eds.) ASIACRYPT 1999. LNCS, vol. 1716, pp. 258–273. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  2. Abe, M., Hoshino, F.: Remarks on Mix-Network Based on Permutation Networks. In: Kim, K.-C. (ed.) PKC 2001. LNCS, vol. 1992, pp. 317–324. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  3. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C: Verifying Program Executions Succinctly and in Zero Knowledge. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 90–108. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  4. Beneš, V.E.: Mathematical Theory of Connecting Networks and Telephone Traffic. Academic Press (August 28, 1965)

    Google Scholar 

  5. Bitansky, N., Chiesa, A., Ishai, Y., Ostrovsky, R., Paneth, O.: Succinct Non-interactive Arguments via Linear Interactive Proofs. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 315–333. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  6. Blelloch, G.: Vector Models for Data-Parallel Computing. MIT Press (1990)

    Google Scholar 

  7. Blum, M., Feldman, P., Micali, S.: Non-Interactive Zero-Knowledge and Its Applications. In: STOC 1988, pp. 103–112. ACM Press (1988)

    Google Scholar 

  8. Chaabouni, R., Lipmaa, H., Zhang, B.: A Non-Interactive Range Proof with Constant Communication. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 179–199. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Clos, C.: A Study of Non-Blocking Switching Networks. Bell System Technical Journal 32(2), 406–424 (1953)

    Article  Google Scholar 

  10. Damgård, I.: Towards Practical Public Key Systems Secure against Chosen Ciphertext Attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 445–456. Springer, Heidelberg (1992)

    Google Scholar 

  11. Di Crescenzo, G., Lipmaa, H.: Succinct NP Proofs from an Extractability Assumption. In: Beckmann, A., Dimitracopoulos, C., Löwe, B. (eds.) CiE 2008. LNCS, vol. 5028, pp. 175–185. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Fauzi, P., Lipmaa, H., Zhang, B.: Efficient Modular NIZK Arguments from Shift and Product. In: Abdalla, M., Nita-Rotaru, C., Dahab, R. (eds.) CANS 2013. LNCS, vol. 8257, pp. 92–121. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  13. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic Span Programs and Succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  14. Goldwasser, S., Micali, S., Rackoff, C.: The Knowledge Complexity of Interactive Proof-Systems. In: Sedgewick, R. (ed.) STOC 1985, pp. 291–304. ACM Press (1985)

    Google Scholar 

  15. Golle, P., Jarecki, S., Mironov, I.: Cryptographic Primitives Enforcing Communication and Storage Complexity. In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 120–135. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  16. Groth, J.: Short Pairing-Based Non-interactive Zero-Knowledge Arguments. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  17. Groth, J., Lu, S.: A Non-interactive Shuffle with Pairing Based Verifiability. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 51–67. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  18. Hwang, F.K.M.: The Mathematical Theory of Nonblocking Switching Networks, 2nd edn. Series on Applied Mathematics, vol. 15. World Scientific Publishing Co Pte Ltd. (October 1, 2004)

    Google Scholar 

  19. Lipmaa, H.: Progression-Free Sets and Sublinear Pairing-Based Non-Interactive Zero-Knowledge Arguments. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 169–189. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  20. Lipmaa, H.: Succinct Non-Interactive Zero Knowledge Arguments from Span Programs and Linear Error-Correcting Codes. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 41–60. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  21. Lipmaa, H.: Almost Optimal Short Adaptive Non-Interactive Zero Knowledge. Tech. Rep. 2014/396, International Association for Cryptologic Research (2014), http://eprint.iacr.org/2014/396

  22. Lipmaa, H., Zhang, B.: A More Efficient Computationally Sound Non-Interactive Zero-Knowledge Shuffle Argument. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 477–502. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  23. Nassimi, D., Sahni, S.: Parallel Algorithms to Set Up the Benes Permutation Network. IEEE Trans. Computers 31(2), 148–154 (1982)

    Article  MATH  Google Scholar 

  24. Opferman, D.C., Tsao-Wu, N.T.: On a Class of Rearrangeable Switching Networks. Part I: Control Algorithm. Bell System Technical Journal 50(5), 1579–1600 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  25. Pippenger, N.: On the Evaluation of Powers and Monomials. SIAM J. Comput. 9(2), 230–250 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  26. Pratt, V.R., Stockmeyer, L.J.: A Characterization of the Power of Vector Machines. Journal of Computer and System Sciences 12(2), 198–221 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  27. Straus, E.G.: Addition Chains of Vectors. American Mathematical Monthly 70, 806–808 (1964)

    MathSciNet  Google Scholar 

  28. Waksman, A.: A Permutation Network. Journal of the ACM 15(1), 159–163 (1968)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Lipmaa, H. (2014). Efficient NIZK Arguments via Parallel Verification of Benes Networks. In: Abdalla, M., De Prisco, R. (eds) Security and Cryptography for Networks. SCN 2014. Lecture Notes in Computer Science, vol 8642. Springer, Cham. https://doi.org/10.1007/978-3-319-10879-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10879-7_24

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10878-0

  • Online ISBN: 978-3-319-10879-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics