iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-319-09879-1_23
Novel Methodology for CRC Biomarkers Detection with Leave-One-Out Bayesian Classification | SpringerLink
Skip to main content

Novel Methodology for CRC Biomarkers Detection with Leave-One-Out Bayesian Classification

  • Conference paper
ICT Innovations 2014 (ICT Innovations 2014)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 311))

Included in the following conference series:

  • 937 Accesses

Abstract

In our previous research we developed a methodology for extracting significant genes that indicate colorectal cancer (CRC). By using those biomarker genes we proposed an intelligent modelling of their gene expression distributions and used them in the Bayes’ theorem in order to achieve highly precise classification of patients in one of the classes carcinogenic, or healthy. The main objective of our new research is to subside the biomarkers set without degrading the sensitivity and specificity of the classifier. We want to eliminate the biomarkers that do not play an important role in the classification process. To achieve this goal, we propose a novel approach for biomarkers detection based on iterative Bayesian classification. The new Leave-one-out method aims to extract the biomarkers essential for the classification process, i.e. if they are left-out, the classification shows remarkably degraded results. Taking into account only the reduced set of biomarkers, we produced an improved version of our Bayesian classifier when classifying new patients. Another advantage of our approach is using the new biomarkers set in the Gene Ontology (GO) analysis in order to get more precise information on the colorectal cancer’s biomarkers’ biological and molecular functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Simjanoska, M., Madevska Bogdanova, A., Popeska, Z.: Bayesian posterior probability classification of colorectal cancer probed with Affymetrix microarray technology. In: 2013 36th International Convention on Information & Communication Technology Electronics & Microelectronics (MIPRO), pp. 959–964. IEEE (2013)

    Google Scholar 

  2. Simjanoska, M., Madevska Bogdanova, A., Panov, S.: Gene ontology analysis of colorectal cancer biomarkers probed with Affymetrix and Illumina microarrays. In: Proceedings of the 5th International Joint Conference on Computational Intelligence, IJCCI 2013, pp. 396–406. IJCCI (2013)

    Google Scholar 

  3. Lascorz, J., Chen, B., Hemminki, K., Försti, A.: Consensus pathways implicated in prognosis of colorectal cancer identified through systematic enrichment analysis of gene expression profiling studies. PloS One 6(4), e18867 (2011)

    Google Scholar 

  4. Xu, Y., Xu, Q., Yang, L., Liu, F., Ye, X., Wu, F., Ni, S., Tan, C., Cai, G., Meng, X., et al.: Gene expression analysis of peripheral blood cells reveals toll-like receptor pathway deregulation in colorectal cancer. PloS One 8(5), e62870 (2013)

    Google Scholar 

  5. Chan, S.K., Griffith, O.L., Tai, I.T., Jones, S.J.: Meta-analysis of colorectal cancer gene expression profiling studies identifies consistently reported candidate biomarkers. Cancer Epidemiology Biomarkers & Prevention 17(3), 543–552 (2008)

    Article  Google Scholar 

  6. Jiang, W., Li, X., Rao, S., Wang, L., Du, L., Li, C., Wu, C., Wang, H., Wang, Y., Yang, B.: Constructing disease-specific gene networks using pair-wise relevance metric: application to colon cancer identifies interleukin 8, desmin and enolase 1 as the central elements. BMC Systems Biology 2(1), 72 (2008)

    Article  Google Scholar 

  7. Wu, Z., Aryee, M.: Subset quantile normalization using negative control features. Journal of Computational Biology 17(10), 1385–1395 (2010)

    Article  MathSciNet  Google Scholar 

  8. Needham, C., Manfield, I., Bulpitt, A., Gilmartin, P., Westhead, D.: From gene expression to gene regulatory networks in arabidopsis thaliana. BMC Systems Biology 3(1), 85 (2009)

    Article  Google Scholar 

  9. Hui, Y., Kang, T., Xie, L., Yuan-Yuan, L.: Digout: Viewing differential expression genes as outliers. Journal of Bioinformatics and Computational Biology 8(suppl. 01), 161–175 (2010)

    Google Scholar 

  10. GLOBOCAN (2008), http://globocan.iarc.fr/factsheets/cancers/colorectal.asp

  11. Wang, K., Li, M., Hakonarson, H.: Analysing biological pathways in genome-wide association studies. Nature Reviews Genetics 11(12), 843–854 (2010)

    Article  Google Scholar 

  12. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., et al.: Gene ontology: tool for the unification of biology. Nature Genetics 25(1), 25 (2000)

    Article  Google Scholar 

  13. Harris, M., Clark, J., Ireland, A., Lomax, J., Ashburner, M., Foulger, R., Eilbeck, K., Lewis, S., Marshall, B., Mungall, C., et al.: The gene ontology (go) database and informatics resource. Nucleic Acids Research 32(Database issue), D258 (2004)

    Google Scholar 

  14. Zheng, Q., Wang, X.J.: Goeast: a web-based software toolkit for gene ontology enrichment analysis. Nucleic Acids Research 36(suppl. 2), W358–W363 (2008)

    Google Scholar 

  15. Simjanoska, M., Bogdanova, A.M., Popeska, Z.: Bayesian multiclass classification of gene expression colorectal cancer stages. In: Trajkovik, V., Anastas, M. (eds.) ICT Innovations 2013. AISC, vol. 231, pp. 177–186. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Simjanoska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Simjanoska, M., Madevska Bogdanova, A. (2015). Novel Methodology for CRC Biomarkers Detection with Leave-One-Out Bayesian Classification. In: Bogdanova, A., Gjorgjevikj, D. (eds) ICT Innovations 2014. ICT Innovations 2014. Advances in Intelligent Systems and Computing, vol 311. Springer, Cham. https://doi.org/10.1007/978-3-319-09879-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09879-1_23

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09878-4

  • Online ISBN: 978-3-319-09879-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics