iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-319-09129-7_26
3D Network Traffic Monitoring Based on an Automatic Attack Classifier | SpringerLink
Skip to main content

3D Network Traffic Monitoring Based on an Automatic Attack Classifier

  • Conference paper
Computational Science and Its Applications – ICCSA 2014 (ICCSA 2014)

Abstract

In the last years, the exponential growth of computer networks has created an incredibly increase of network data traffic. The management becomes a challenging task, requesting a continuous monitoring of the network to detect and diagnose problems, and to fix problems and to optimize performance. Tools, such as Tcpdump and Snort are commonly used as network sniffer, logging and analysis applied on a dedicated host or network segment. They capture the traffic and analyze it for suspicious usage patterns, such as those that occur normally with port scans or Denial-of-service attacks. These tools are very important for the network management, but they do not take advantage of human cognitive capacity of the learning and pattern recognition. To overcome this limitation, this paper aims to present a visual interactive and multiprojection 3D tool with automatic data classification for attack detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. TCPDUMP. TCPDUMM & LIBPCAP, http://www.tcpdump.org/ (accessed September 2012)

  2. NGREP, Ngrep – networl grep, http://ngrep.sourceforge.net/ (accessed September 2012)

  3. SNORT. Snort:Home Page, http://www.snort.org/ (accessed September 2012)

  4. Papa, J.P., Falcão, A.X., Suzuki, C.T.N.: Supervised Pattern Classification based on Optimum-Path Forest. Journal of Imaging Systems and Technology 19(2), 120–131 (2009) ISSN: 0899-9457

    Google Scholar 

  5. ETHERAPE. EtherApe, a graphical network monitor, http://etherape.sourceforge.net/ (accessed September 2012)

  6. Ball, R., Fink, G.A., North, C.: Home-Centric Visualization of Network Traffic for Security Administration. In: VizSEC/DMSEC 2004: Proceedings of the 2004 ACM Workshop on Visualization and, pp. 55–64. ACM Press (2004)

    Google Scholar 

  7. Lau, S.: The Spinning Cube of Potential Doom. Communications of the ACM 47(6) (June 2004)

    Google Scholar 

  8. Lakkaraju, K., Yurcik, W., Lee, A.J.: NVisionIP: netflow visualizations of system state for security situational awareness. In: Proceedings of the 2004 ACM Workshop on Visualization and Data Mining For Computer Security, VizSEC/DMSEC 2004, Washington DC, USA, pp. 65–72. ACM, New York (2004), doi: http://doi.acm.org/10.1145/1029208.1029219

  9. SNORT. Snort network intrusion prevention and detection system, http://www.snort.org (accessed September 2012)

  10. TRAFSHOW. Network traffic monitoring utility, http://linux.maruhn.com/sec/trafshow.html (accessed September 2012)

  11. SYMANTEC. Symantec – Confidence in a connected world, http://www.symantec.com/threatreport/topic.jsp?id=highlights (accessed September 2012)

  12. Khan, M., Khan, S.S.: Data and Information Visualization Methods, and Interactive Mechanisms: A Survey. International Journal of Computer Applications 34(1), 0975–8887 (2011)

    Google Scholar 

  13. WIIUSEJ. Java Api for Wiimotes: WiiUseJ, http://code.google.com/p/wiiusej/ (accessed September 2012)

  14. OPENNI. OpenNI – Introducing OpenNI, http://openni.org/ (accessed September 2012)

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Dias, D.R.C., Brega, J.R.F., Trevelin, L.C., Gnecco, B.B., Papa, J.P., de Paiva Guimarães, M. (2014). 3D Network Traffic Monitoring Based on an Automatic Attack Classifier. In: Murgante, B., et al. Computational Science and Its Applications – ICCSA 2014. ICCSA 2014. Lecture Notes in Computer Science, vol 8580. Springer, Cham. https://doi.org/10.1007/978-3-319-09129-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09129-7_26

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09128-0

  • Online ISBN: 978-3-319-09129-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics