iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-319-08786-3_22
Collaborative Compound Critiquing | SpringerLink
Skip to main content

Collaborative Compound Critiquing

  • Conference paper
User Modeling, Adaptation, and Personalization (UMAP 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8538))

Abstract

Critiquing-based recommender systems offer users a conversational paradigm to provide their feedback, named critiques, during the process of viewing the current recommendation. In this way, the system is able to learn and adapt to the users’ preferences more precisely so that better recommendation could be returned in the subsequent iteration. Moreover, recent works on experience-based critiquing have suggested the power of improving the recommendation efficiency by making use of relevant sessions from other users’ histories so as to save the active user’s interaction effort. In this paper, we present a novel approach to processing the history data and apply it to the compound critiquing system. Specifically, we develop a history-aware collaborative compound critiquing method based on preference-based compound critique generation and graph-based similar session identification. Through experiments on two data sets, we validate the outperforming efficiency of our proposed method in comparison to the other experience-based methods. In addition, we verify that incorporating user histories into compound critiquing system can be significantly more effective than the corresponding unit critiquing system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering 17(6), 734–749 (2005)

    Article  Google Scholar 

  2. Becerra, C., Gonzalez, F., Gelbukh, A.: Visualizable and explicable recommendations obtained from price estimation functions. In: Proc. ACM RecSys 2011, pp. 27–34 (2011)

    Google Scholar 

  3. Burke, R.D., Hammond, K.J., Yound, B.: The findme approach to assisted browsing. IEEE Expert 12(4), 32–40 (1997)

    Article  Google Scholar 

  4. Chen, L.: User Decision Improvement and Trust Building in Product Recommender Systems. PhD thesis, Ecole Polytechnique Federale De Lausanne (EPFL), Lausanne, Switzerland (August 2008)

    Google Scholar 

  5. Chen, L., Pu, P.: Preference-based organization interfaces: Aiding user critiques in recommender systems. In: Conati, C., McCoy, K., Paliouras, G. (eds.) UM 2007. LNCS (LNAI), vol. 4511, pp. 77–86. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Chen, L., Pu, P.: Critiquing-based recommenders: survey and emerging trends. User Modeling and User-Adapted Interaction 22(1-2), 125–150 (2012)

    Article  Google Scholar 

  7. Keeney, R.L.: Decisions with Multiple Objectives: Preferences and Value Trade-offs. Cambridge University Press (1993)

    Google Scholar 

  8. Linden, G., Hanks, S., Lesh, N.: Interactive assessment of user preference models: The automated travel assistant. In: Proc. UM 1997, pp. 67–68 (1997)

    Google Scholar 

  9. Mandl, M., Felfernig, A.: Improving the performance of unit critiquing. In: Masthoff, J., Mobasher, B., Desmarais, M.C., Nkambou, R. (eds.) UMAP 2012. LNCS, vol. 7379, pp. 176–187. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  10. McCarthy, K., McGinty, L., Smyth, B.: Dynamic critiquing: An analysis of cognitive load. In: Proc. ICAICS 2005, pp. 19–28 (2005)

    Google Scholar 

  11. McCarthy, K., Reilly, J., McGinty, L., Smyth, B.: On the dynamic generation of compound critiques in conversational recommender systems. In: De Bra, P.M.E., Nejdl, W. (eds.) AH 2004. LNCS, vol. 3137, pp. 176–184. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Mccarthy, K., Reilly, J., Smyth, B., Mcginty, L.: Generating diverse compound critiques. Artificial Intelligence Review 24(3-4), 339–357 (2005)

    Article  Google Scholar 

  13. McCarthy, K., Salem, Y., Smyth, B.: Experience-based critiquing: Reusing critiquing experiences to improve conversational recommendation. In: Bichindaritz, I., Montani, S. (eds.) ICCBR 2010. LNCS, vol. 6176, pp. 480–494. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  14. Quinlan, J.R.: Combining instance-based and model-based learning. In: Proc. ICML 1993, pp. 236–243 (1993)

    Google Scholar 

  15. Reilly, J., McCarthy, K., McGinty, L., Smyth, B.: Dynamic critiquing. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 763–777. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  16. Reilly, J., McCarthy, K., McGinty, L., Smyth, B.: Incremental critiquing. Knowledge-Based Systems 18(4), 143–151 (2005)

    Article  Google Scholar 

  17. Salem, Y., Hong, J.: History-aware critiquing-based conversational recommendation. In: Proc. WWW 2013, pp. 63–64 (2013)

    Google Scholar 

  18. Zhang, J., Pu, P.: A comparative study of compound critique generation in conversational recommender systems. In: Wade, V.P., Ashman, H., Smyth, B. (eds.) AH 2006. LNCS, vol. 4018, pp. 234–243. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Xie, H., Chen, L., Wang, F. (2014). Collaborative Compound Critiquing. In: Dimitrova, V., Kuflik, T., Chin, D., Ricci, F., Dolog, P., Houben, GJ. (eds) User Modeling, Adaptation, and Personalization. UMAP 2014. Lecture Notes in Computer Science, vol 8538. Springer, Cham. https://doi.org/10.1007/978-3-319-08786-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08786-3_22

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08785-6

  • Online ISBN: 978-3-319-08786-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics