iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-319-08144-1_4
Recent Advances in Periscope for Performance Analysis and Tuning | SpringerLink
Skip to main content

Recent Advances in Periscope for Performance Analysis and Tuning

  • Conference paper
  • First Online:
Tools for High Performance Computing 2013

Abstract

State of the art High Performance Computing (HPC) systems pose considerable programming challenges to application developers when tuning their applications. Periscope toolkit is one of a number of performance engineering instruments supporting application programmers in meeting those challenges. Due to the variety of architectures, programming models, runtime environments, and compilers on those systems, programmers need to apply multiple tools to understand and improve program performance. In this paper, we present the latest developments in Periscope aiming at (1) improving its interoperability and integration with other tools, (2) integrating automatic tuning support with performance analysis and (3) further extending performance analysis capabilities. The add-on for Periscope, called PAThWay, allows for the integration of multiple tools into performance tuning workflows. Further, Periscope is currently being extended with the ability to automatically tune parallel applications with respect to execution performance and energy consumption. And finally, new analysis capabilities were added to Periscope for the automatic evaluation of the temporal performance behavior of long-running applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.jboss.org/jbpm/

References

  1. Allweyer, T.: BPMN 2.0: Introduction to the Standard for Business Process Modeling. BoD–Books on Demand, Norderstedt (2010)

    Google Scholar 

  2. Barker, A., Van Hemert, J.: Scientific workflow: a survey and research directions. In: Parallel Processing and Applied Mathematics, pp. 746–753. Springer, Berlin/New York (2008)

    Google Scholar 

  3. Casas, M., Badia, R.M., Labarta, J.: Automatic phase detection and structure extraction of MPI applications. Int. J. High Perform. Comput. Appl. 24(3), 335–360 (Aug 2010). http://dx.doi.org/10.1177/1094342009360039

  4. Chung, I.H., Hollingsworth, J.: Using information from prior runs to improve automated tuning systems. In: Proceedings of the 2004 ACM/IEEE Conference on Supercomputing, SC ’04, Pittsburgh, pp. 30–. IEEE Computer Society, Washington, DC (2004). http://dx.doi.org/10.1109/SC.2004.65

  5. Collins, A., Fensch, C., Leather, H.: MaSiF: machine learning guided auto-tuning of parallel skeletons. In: Yew, P.C., Cho, S., DeRose, L., Lilja, D. (eds.) PACT, Minneapolis, pp. 437–438. ACM (2012). http://dblp.uni-trier.de/db/conf/IEEEpact/pact2012.html#CollinsFL12

  6. Fursin, G., Kashnikov, Y., Wahid, A., Chamski, M.Z., Temam, O., Namolaru, M., Yom-tov, E., Mendelson, B., Zaks, A., Courtois, E., Bodin, F., Barnard, P., Ashton, E., Bonilla, E., Thomson, J., Williams, C.: Milepost GCC: machine learning enabled self-tuning compiler (2009)

    Google Scholar 

  7. Gonzalez, J., Gimenez, J., Labarta, J.: Automatic evaluation of the computation structure of parallel applications. In: 2009 International Conference on Parallel and Distributed Computing, Applications and Technologies, Higashi Hiroshima, pp. 138–145. IEEE (2009)

    Google Scholar 

  8. Haneda, M., Knijnenburg, P., Wijshoff, H.: Automatic selection of compiler options using non-parametric inferential statistics. In: International Conference on Parallel Architectures and Compilation Techniques, Saint Louis, pp. 123–132 (2005)

    Google Scholar 

  9. Jordan, D., Evdemon, J., Alves, A., Arkin, A., Askary, S., Barreto, C., Bloch, B., Curbera, F., Ford, M., Goland, Y., et al.: Web Services Business Process Execution Language Version 2.0. OASIS Standard 11 (2007)

    Google Scholar 

  10. Jordan, H., Thoman, P., Durillo, J., Pellegrini, S., Gschwandtner, P., Fahringer, T., Moritsch, H.: A multi-objective auto-tuning framework for parallel codes. In: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, SC ’12, Salt Lake City. IEEE Computer Society Press, Los Alamitos, pp. 10:1–10:12 (2012). http://dl.acm.org/citation.cfm?id=2388996.2389010

  11. Knüpfer, A., Rössel, C., Mey, D., Biersdorff, S., Diethelm, K., Eschweiler, D., Geimer, M., Gerndt, M., Lorenz, D., Malony, A., et al.: Score-P: a joint performance measurement run-time infrastructure for periscope, scalasca, TAU, and vampir. In: Tools for High Performance Computing 2011, pp. 79–91. Springer, Berlin/Heidelberg (2012)

    Google Scholar 

  12. Leather, H., Bonilla, E.: Automatic feature generation for machine learning based optimizing compilation. In: Code Generation and Optimization (CGO), Seattle, pp. 81–91 (2009)

    Google Scholar 

  13. Malony, A.D., Shende, S.S., Morris, A.: Phase-based parallel performance profiling. In: G.R. Joubert, W.E. Nagel, F.J. Peters, O. Plata, P. Tirado, E.Z. (eds.) Proceedings of the International Conference ParCo 2005, Malaga. NIC Series, vol. 33, pp. 203–210. John von Neumann Institute for Computing, Julich, (2006)

    Google Scholar 

  14. Nelson, Y., Bansal, B., Hall, M., Nakano, A., Lerman, K.: Model-guided performance tuning of parameter values: a case study with molecular dynamics visualization. In: International Parallel and Distributed Processing Symposium, Miami, pp. 1–8 (2008)

    Google Scholar 

  15. Pan, Z., Eigenmann, R.: Fast and effective orchestration of compiler optimizations for automatic performance tuning. In: Proceedings of the International Symposium on Code Generation and Optimization (CGO), New York, pp. 319–332 (2006)

    Google Scholar 

  16. Ribler, R., Vetter, J., Simitci, H., Reed, D.: Autopilot: adaptive control of distributed applications. In: Proceedings of the 7th IEEE Symposium on High-Performance Distributed Computing, Chicago, pp. 172–179 (1998)

    Google Scholar 

  17. Tiwari, A., Chen, C., Chame, J., Hall, M., Hollingsworth, J.: A scalable auto-tuning framework for compiler optimization. In: International Parallel and Distributed Processing Symposium, Rome, pp. 1–12 (2009)

    Google Scholar 

  18. Triantafyllis, S., Vachharajani, M., Vachharajani, N., August, D.: Compiler optimization-space exploration. In: Proceedings of the international symposium on Code generation and optimization, San Francisco, pp. 204–215. IEEE Computer Society (2003)

    Google Scholar 

  19. Witkin, A.: Scale-space filtering: a new approach to multi-scale description. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP’84, San Diego, vol. 9, pp. 150–153. IEEE (1984)

    Google Scholar 

Download references

Acknowledgements

The authors thank the European Union for supporting AutoTune project under the Seventh Framework Programme, grant no. 288038 and German Federal Ministry of Research and Education (BMBF) for supporting LMAC project under the Grant No. 01IH11006F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yury Oleynik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Oleynik, Y., Mijaković, R., Comprés Ureña, I.A., Firbach, M., Gerndt, M. (2014). Recent Advances in Periscope for Performance Analysis and Tuning. In: Knüpfer, A., Gracia, J., Nagel, W., Resch, M. (eds) Tools for High Performance Computing 2013. Springer, Cham. https://doi.org/10.1007/978-3-319-08144-1_4

Download citation

Publish with us

Policies and ethics