Abstract
State of the art High Performance Computing (HPC) systems pose considerable programming challenges to application developers when tuning their applications. Periscope toolkit is one of a number of performance engineering instruments supporting application programmers in meeting those challenges. Due to the variety of architectures, programming models, runtime environments, and compilers on those systems, programmers need to apply multiple tools to understand and improve program performance. In this paper, we present the latest developments in Periscope aiming at (1) improving its interoperability and integration with other tools, (2) integrating automatic tuning support with performance analysis and (3) further extending performance analysis capabilities. The add-on for Periscope, called PAThWay, allows for the integration of multiple tools into performance tuning workflows. Further, Periscope is currently being extended with the ability to automatically tune parallel applications with respect to execution performance and energy consumption. And finally, new analysis capabilities were added to Periscope for the automatic evaluation of the temporal performance behavior of long-running applications.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Allweyer, T.: BPMN 2.0: Introduction to the Standard for Business Process Modeling. BoD–Books on Demand, Norderstedt (2010)
Barker, A., Van Hemert, J.: Scientific workflow: a survey and research directions. In: Parallel Processing and Applied Mathematics, pp. 746–753. Springer, Berlin/New York (2008)
Casas, M., Badia, R.M., Labarta, J.: Automatic phase detection and structure extraction of MPI applications. Int. J. High Perform. Comput. Appl. 24(3), 335–360 (Aug 2010). http://dx.doi.org/10.1177/1094342009360039
Chung, I.H., Hollingsworth, J.: Using information from prior runs to improve automated tuning systems. In: Proceedings of the 2004 ACM/IEEE Conference on Supercomputing, SC ’04, Pittsburgh, pp. 30–. IEEE Computer Society, Washington, DC (2004). http://dx.doi.org/10.1109/SC.2004.65
Collins, A., Fensch, C., Leather, H.: MaSiF: machine learning guided auto-tuning of parallel skeletons. In: Yew, P.C., Cho, S., DeRose, L., Lilja, D. (eds.) PACT, Minneapolis, pp. 437–438. ACM (2012). http://dblp.uni-trier.de/db/conf/IEEEpact/pact2012.html#CollinsFL12
Fursin, G., Kashnikov, Y., Wahid, A., Chamski, M.Z., Temam, O., Namolaru, M., Yom-tov, E., Mendelson, B., Zaks, A., Courtois, E., Bodin, F., Barnard, P., Ashton, E., Bonilla, E., Thomson, J., Williams, C.: Milepost GCC: machine learning enabled self-tuning compiler (2009)
Gonzalez, J., Gimenez, J., Labarta, J.: Automatic evaluation of the computation structure of parallel applications. In: 2009 International Conference on Parallel and Distributed Computing, Applications and Technologies, Higashi Hiroshima, pp. 138–145. IEEE (2009)
Haneda, M., Knijnenburg, P., Wijshoff, H.: Automatic selection of compiler options using non-parametric inferential statistics. In: International Conference on Parallel Architectures and Compilation Techniques, Saint Louis, pp. 123–132 (2005)
Jordan, D., Evdemon, J., Alves, A., Arkin, A., Askary, S., Barreto, C., Bloch, B., Curbera, F., Ford, M., Goland, Y., et al.: Web Services Business Process Execution Language Version 2.0. OASIS Standard 11 (2007)
Jordan, H., Thoman, P., Durillo, J., Pellegrini, S., Gschwandtner, P., Fahringer, T., Moritsch, H.: A multi-objective auto-tuning framework for parallel codes. In: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, SC ’12, Salt Lake City. IEEE Computer Society Press, Los Alamitos, pp. 10:1–10:12 (2012). http://dl.acm.org/citation.cfm?id=2388996.2389010
Knüpfer, A., Rössel, C., Mey, D., Biersdorff, S., Diethelm, K., Eschweiler, D., Geimer, M., Gerndt, M., Lorenz, D., Malony, A., et al.: Score-P: a joint performance measurement run-time infrastructure for periscope, scalasca, TAU, and vampir. In: Tools for High Performance Computing 2011, pp. 79–91. Springer, Berlin/Heidelberg (2012)
Leather, H., Bonilla, E.: Automatic feature generation for machine learning based optimizing compilation. In: Code Generation and Optimization (CGO), Seattle, pp. 81–91 (2009)
Malony, A.D., Shende, S.S., Morris, A.: Phase-based parallel performance profiling. In: G.R. Joubert, W.E. Nagel, F.J. Peters, O. Plata, P. Tirado, E.Z. (eds.) Proceedings of the International Conference ParCo 2005, Malaga. NIC Series, vol. 33, pp. 203–210. John von Neumann Institute for Computing, Julich, (2006)
Nelson, Y., Bansal, B., Hall, M., Nakano, A., Lerman, K.: Model-guided performance tuning of parameter values: a case study with molecular dynamics visualization. In: International Parallel and Distributed Processing Symposium, Miami, pp. 1–8 (2008)
Pan, Z., Eigenmann, R.: Fast and effective orchestration of compiler optimizations for automatic performance tuning. In: Proceedings of the International Symposium on Code Generation and Optimization (CGO), New York, pp. 319–332 (2006)
Ribler, R., Vetter, J., Simitci, H., Reed, D.: Autopilot: adaptive control of distributed applications. In: Proceedings of the 7th IEEE Symposium on High-Performance Distributed Computing, Chicago, pp. 172–179 (1998)
Tiwari, A., Chen, C., Chame, J., Hall, M., Hollingsworth, J.: A scalable auto-tuning framework for compiler optimization. In: International Parallel and Distributed Processing Symposium, Rome, pp. 1–12 (2009)
Triantafyllis, S., Vachharajani, M., Vachharajani, N., August, D.: Compiler optimization-space exploration. In: Proceedings of the international symposium on Code generation and optimization, San Francisco, pp. 204–215. IEEE Computer Society (2003)
Witkin, A.: Scale-space filtering: a new approach to multi-scale description. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP’84, San Diego, vol. 9, pp. 150–153. IEEE (1984)
Acknowledgements
The authors thank the European Union for supporting AutoTune project under the Seventh Framework Programme, grant no. 288038 and German Federal Ministry of Research and Education (BMBF) for supporting LMAC project under the Grant No. 01IH11006F.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Oleynik, Y., Mijaković, R., Comprés Ureña, I.A., Firbach, M., Gerndt, M. (2014). Recent Advances in Periscope for Performance Analysis and Tuning. In: Knüpfer, A., Gracia, J., Nagel, W., Resch, M. (eds) Tools for High Performance Computing 2013. Springer, Cham. https://doi.org/10.1007/978-3-319-08144-1_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-08144-1_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-08143-4
Online ISBN: 978-3-319-08144-1
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)