iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-319-07644-7_10
Hybrids of Integer Programming and ACO for Resource Constrained Job Scheduling | SpringerLink
Skip to main content

Hybrids of Integer Programming and ACO for Resource Constrained Job Scheduling

  • Conference paper
Hybrid Metaheuristics (HM 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8457))

Included in the following conference series:

Abstract

A recent line of research considers hybrids of Lagrangian relaxation and Ant Colony Optimisation (ACO). Studies have shown that for hard constrained optimisation problems Lagrangian relaxation can effectively guide ACO to provide good feasible solutions. We consider applying these ideas to create a matheuristic combining ACO with decomposition approaches from mathematical programming for a resource constrained job scheduling problem. We are given a number of jobs which have to be executed on a number of machines satisfying several constraints. These include precedences and release times within machines and the machines are linked via a central resource constraint. By removing the linking constraint, the each machine’s scheduling problem can be solved independently as a relatively simple subproblem. Both Danzig-Wolfe decomposition with column generation and Lagrangian relaxation are tried to carry out this decomposition. The relaxed solutions can provide useful guidance to determine solutions either via problem specific heuristics and ACO. Empirical results show that the Lagrangian relaxation matheuristic performs well in limited time-frames whereas the column generation based heuristic provides improved lower and upper bounds when run to convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ballestin, F., Trautmann, N.: An Iterated-local-search Heuristic for the Resource-constrained Weighted Earliness-tardiness Project Scheduling Problem. International Journal of Production Research 46, 6231–6249 (2008)

    Article  MATH  Google Scholar 

  2. Barnhart, C., Johnson, E.L., Nemhauser, G.L., Savelsbergh, M.W.P., Vance, P.H.: Branch-and-Price: Column Generation for Solving Huge Integer Programs. Operations Research 46(3), 316–329 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bazaraa, M.S., Jarvis, J.J., Sherali, H.F.: Linear Programming and Network Flows, 2nd edn. John Wiley & Sons, New York (1990)

    MATH  Google Scholar 

  4. Bertsekas, D.: Nonlinear Programming, 2nd edn. Athena Scientific, New Hampshire (1995)

    MATH  Google Scholar 

  5. Bertsekas, D.P., Nedić, A., Ozdaglar, A.E.: Convex Analysis and Optimization. Athena Scientific (2003)

    Google Scholar 

  6. Blum, C., Roli, A.: Metaheuristics in Combinatorial Optimization: Overview and Conceptual Comparison. ACM Computing Surveys 35, 268–308 (2003)

    Article  Google Scholar 

  7. Boschetti, M., Maniezzo, V.: Benders Decomposition, Lagrangean Relaxation and Metaheuristic Design. Journal of Heuristics 15(3), 283–312 (2009)

    Article  MATH  Google Scholar 

  8. Brucker, P., Drexl, A., Möhring, R., Neumann, K., Pesch, E.: Resource-constrained Project Scheduling: Notation, Classification, Models, and Methods. European Journal of Operational Research 112, 3–41 (1999)

    Article  MATH  Google Scholar 

  9. Demeulemeester, E., Herroelen, W.: Project Scheduling: A Research Handbook. Kluwer, Boston (2002)

    Google Scholar 

  10. Dorigo, M.: Optimization, Learning and Natural Algorithms. Ph.D. thesis, Dip. Elettronica (1992)

    Google Scholar 

  11. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  12. Fisher, M.: The Lagrangian Relaxation Method for Solving Integer Programming Problems. Management Science 50(12), 1861–1871 (2004)

    Article  Google Scholar 

  13. Massen, F., Deville, Y., Van Hentenryck, P.: Pheromone-Based Heuristic Column Generation for Vehicle Routing Problems with Black Box Feasibility. In: Beldiceanu, N., Jussien, N., Pinson, É. (eds.) CPAIOR 2012. LNCS, vol. 7298, pp. 260–274. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  14. Massen, F., López-Ibáñez, M., Stützle, T., Deville, Y.: Experimental Analysis of Pheromone-Based Heuristic Column Generation Using irace. In: Blesa, M.J., Blum, C., Festa, P., Roli, A., Sampels, M. (eds.) HM 2013. LNCS, vol. 7919, pp. 92–106. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  15. du Merle, O., Villeneuve, D., Desrosiers, J., Hansen, P.: Stabilized column generation. Discrete Mathematics 194, 229–237 (1997)

    Article  Google Scholar 

  16. Neumann, K., Schwindt, C., Zimmermann, J.: Project Scheduling with Time Windows and Scarce Resources. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  17. Singh, G., Ernst, A.T.: Resource Constraint Scheduling with a Fractional Shared Resource. Operations Research Letters 39(5), 363–368 (2011)

    MATH  MathSciNet  Google Scholar 

  18. Singh, G., Weiskircher, R.: Collaborative resource constraint scheduling with a fractional shared resource. In: IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, vol. 2, pp. 359–365. IEEE (2008)

    Google Scholar 

  19. Singh, G., Weiskircher, R.: A Multi-Agent System for Decentralised Fractional Shared Resource Constraint Scheduling. Web Intelligence and Agent Systems 9(2), 99–108 (2011)

    Google Scholar 

  20. Thiruvady, D., Ernst, A.T., Singh, G.: Parallel Ant Colony Optimization for Resource Constrained Job Scheduling. Annals of Operations Research, 1–18 (2014)

    Google Scholar 

  21. Thiruvady, D., Ernst, A.T., Wallace, M.: A Lagrangian-ACO Matheuristic for Car Sequencing (to be published, 2014)

    Google Scholar 

  22. Thiruvady, D., Singh, G., Ernst, A.T., Meyer, B.: Constraint-based ACO for a Shared Resource Constrained Scheduling Problem. International Journal of Production Economics 141(1), 230–242 (2012)

    Article  Google Scholar 

  23. Thiruvady, D., Wallace, M., Gu, H., Schutt, A.: A Lagrangian Relaxation and ACO Hybrid for Resource Constrained Project Scheduling with Discounted Cash Flows (to be published, 2014)

    Google Scholar 

  24. Wolsey, L.A.: Integer programming. Wiley-Interscience, New York (1998)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Thiruvady, D., Singh, G., Ernst, A.T. (2014). Hybrids of Integer Programming and ACO for Resource Constrained Job Scheduling. In: Blesa, M.J., Blum, C., Voß, S. (eds) Hybrid Metaheuristics. HM 2014. Lecture Notes in Computer Science, vol 8457. Springer, Cham. https://doi.org/10.1007/978-3-319-07644-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07644-7_10

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07643-0

  • Online ISBN: 978-3-319-07644-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics