Abstract
A recent line of research considers hybrids of Lagrangian relaxation and Ant Colony Optimisation (ACO). Studies have shown that for hard constrained optimisation problems Lagrangian relaxation can effectively guide ACO to provide good feasible solutions. We consider applying these ideas to create a matheuristic combining ACO with decomposition approaches from mathematical programming for a resource constrained job scheduling problem. We are given a number of jobs which have to be executed on a number of machines satisfying several constraints. These include precedences and release times within machines and the machines are linked via a central resource constraint. By removing the linking constraint, the each machine’s scheduling problem can be solved independently as a relatively simple subproblem. Both Danzig-Wolfe decomposition with column generation and Lagrangian relaxation are tried to carry out this decomposition. The relaxed solutions can provide useful guidance to determine solutions either via problem specific heuristics and ACO. Empirical results show that the Lagrangian relaxation matheuristic performs well in limited time-frames whereas the column generation based heuristic provides improved lower and upper bounds when run to convergence.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ballestin, F., Trautmann, N.: An Iterated-local-search Heuristic for the Resource-constrained Weighted Earliness-tardiness Project Scheduling Problem. International Journal of Production Research 46, 6231–6249 (2008)
Barnhart, C., Johnson, E.L., Nemhauser, G.L., Savelsbergh, M.W.P., Vance, P.H.: Branch-and-Price: Column Generation for Solving Huge Integer Programs. Operations Research 46(3), 316–329 (1998)
Bazaraa, M.S., Jarvis, J.J., Sherali, H.F.: Linear Programming and Network Flows, 2nd edn. John Wiley & Sons, New York (1990)
Bertsekas, D.: Nonlinear Programming, 2nd edn. Athena Scientific, New Hampshire (1995)
Bertsekas, D.P., Nedić, A., Ozdaglar, A.E.: Convex Analysis and Optimization. Athena Scientific (2003)
Blum, C., Roli, A.: Metaheuristics in Combinatorial Optimization: Overview and Conceptual Comparison. ACM Computing Surveys 35, 268–308 (2003)
Boschetti, M., Maniezzo, V.: Benders Decomposition, Lagrangean Relaxation and Metaheuristic Design. Journal of Heuristics 15(3), 283–312 (2009)
Brucker, P., Drexl, A., Möhring, R., Neumann, K., Pesch, E.: Resource-constrained Project Scheduling: Notation, Classification, Models, and Methods. European Journal of Operational Research 112, 3–41 (1999)
Demeulemeester, E., Herroelen, W.: Project Scheduling: A Research Handbook. Kluwer, Boston (2002)
Dorigo, M.: Optimization, Learning and Natural Algorithms. Ph.D. thesis, Dip. Elettronica (1992)
Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
Fisher, M.: The Lagrangian Relaxation Method for Solving Integer Programming Problems. Management Science 50(12), 1861–1871 (2004)
Massen, F., Deville, Y., Van Hentenryck, P.: Pheromone-Based Heuristic Column Generation for Vehicle Routing Problems with Black Box Feasibility. In: Beldiceanu, N., Jussien, N., Pinson, É. (eds.) CPAIOR 2012. LNCS, vol. 7298, pp. 260–274. Springer, Heidelberg (2012)
Massen, F., López-Ibáñez, M., Stützle, T., Deville, Y.: Experimental Analysis of Pheromone-Based Heuristic Column Generation Using irace. In: Blesa, M.J., Blum, C., Festa, P., Roli, A., Sampels, M. (eds.) HM 2013. LNCS, vol. 7919, pp. 92–106. Springer, Heidelberg (2013)
du Merle, O., Villeneuve, D., Desrosiers, J., Hansen, P.: Stabilized column generation. Discrete Mathematics 194, 229–237 (1997)
Neumann, K., Schwindt, C., Zimmermann, J.: Project Scheduling with Time Windows and Scarce Resources. Springer, Berlin (2003)
Singh, G., Ernst, A.T.: Resource Constraint Scheduling with a Fractional Shared Resource. Operations Research Letters 39(5), 363–368 (2011)
Singh, G., Weiskircher, R.: Collaborative resource constraint scheduling with a fractional shared resource. In: IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, vol. 2, pp. 359–365. IEEE (2008)
Singh, G., Weiskircher, R.: A Multi-Agent System for Decentralised Fractional Shared Resource Constraint Scheduling. Web Intelligence and Agent Systems 9(2), 99–108 (2011)
Thiruvady, D., Ernst, A.T., Singh, G.: Parallel Ant Colony Optimization for Resource Constrained Job Scheduling. Annals of Operations Research, 1–18 (2014)
Thiruvady, D., Ernst, A.T., Wallace, M.: A Lagrangian-ACO Matheuristic for Car Sequencing (to be published, 2014)
Thiruvady, D., Singh, G., Ernst, A.T., Meyer, B.: Constraint-based ACO for a Shared Resource Constrained Scheduling Problem. International Journal of Production Economics 141(1), 230–242 (2012)
Thiruvady, D., Wallace, M., Gu, H., Schutt, A.: A Lagrangian Relaxation and ACO Hybrid for Resource Constrained Project Scheduling with Discounted Cash Flows (to be published, 2014)
Wolsey, L.A.: Integer programming. Wiley-Interscience, New York (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Thiruvady, D., Singh, G., Ernst, A.T. (2014). Hybrids of Integer Programming and ACO for Resource Constrained Job Scheduling. In: Blesa, M.J., Blum, C., Voß, S. (eds) Hybrid Metaheuristics. HM 2014. Lecture Notes in Computer Science, vol 8457. Springer, Cham. https://doi.org/10.1007/978-3-319-07644-7_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-07644-7_10
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-07643-0
Online ISBN: 978-3-319-07644-7
eBook Packages: Computer ScienceComputer Science (R0)