iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-319-07557-0_16
A $\frac{5}{4}$ -Approximation for Subcubic 2EC Using Circulations | SpringerLink
Skip to main content

A \(\frac{5}{4}\)-Approximation for Subcubic 2EC Using Circulations

  • Conference paper
Integer Programming and Combinatorial Optimization (IPCO 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8494))

  • 1632 Accesses

Abstract

In this paper we study the NP-hard problem of finding a minimum size 2-edge-connected spanning subgraph (henceforth 2EC) in cubic and subcubic multigraphs. We present a new \(\frac{5}{4}\)-approximation algorithm for 2EC for subcubic bridgeless graphs, improving upon the current best approximation ratio of \(\frac{5}{4}+\varepsilon\). Our algorithm involves an elegant new method based on circulations which we feel has potential to be more broadly applied. We also study the closely related integrality gap problem, i.e. the worst case ratio between the integer linear program for 2EC and its linear programming relaxation, both theoretically and computationally. We show this gap is at most \(\frac{9}{8}\) for all subcubic bridgeless graphs with up to 16 nodes. Moreover, we present a family of graphs that demonstrate the integrality gap is at least \(\frac{8}{7}\), even when restricted to subcubic bridgeless graphs. This represents an improvement over the previous best known bound of \(\frac{9}{8}\).

This research was partially supported by the Natural Science and Engineering Research Council of Canada (NSERC).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Csaba, B., Karpinski, M., Krysta, P.: Approximability of dense and sparse instances of minimum 2-connectivity, tsp and path problems. In: Eppstein, D. (ed.) SODA, ACM/SIAM, pp. 74–83 (2002)

    Google Scholar 

  2. Alexander, A., Boyd, S., Elliott-Magwood, P.: On the integrality gap of the 2-edge connected subgraph problem. Technical Report TR-2006-04, SITE, University of Ottawa, Ottawa, Canada (2006)

    Google Scholar 

  3. Mömke, T., Svensson, O.: Approximating graphic tsp by matchings. In: Ostrovsky, R. (ed.) IEEE FOCS, pp. 560–569 (2011)

    Google Scholar 

  4. Sebő, A., Vygen, J.: Shorter tours by nicer ears. CoRR abs/1201.1870 (2012)

    Google Scholar 

  5. Khuller, S., Vishkin, U.: Biconnectivity approximations and graph carvings. J. ACM 41(2), 214–235 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cheriyan, J., Sebő, A., Szigeti, Z.: Improving on the 1.5 approximation of a smallest 2-edge connected spanning subgraph. SIAM J. Discrete Math. 14, 170–180 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Vempala, S., Vetta, A.: Factor 4/3 approximations for minimum 2-connected subgraphs. In: Jansen, K., Khuller, S. (eds.) APPROX 2000. LNCS, vol. 1913, pp. 262–273. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  8. Krysta, P., Kumar, V.S.A.: Approximation algorithms for minimum size 2-connectivity problems. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 431–442. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  9. Huh, W.T.: Finding 2-edge connected spanning subgraphs. Oper. Res. Lett. 32(3), 212–216 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Boyd, S., Iwata, S., Takazawa, K.: Finding 2-factors closer to tsp tours in cubic graphs. SIAM J. Discrete Math. 27(2), 918–939 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hoffman, A.J.: Some recent applications of the theory of linear inequalities to extremal combinatorial analysis. In: Combinatorial Analysis, pp. 113–127 (1960)

    Google Scholar 

  12. Schrijver, A.: Chapters 11-12. In: Combinatorial Optimization. Springer (2003)

    Google Scholar 

  13. Sun, Y.: Theoretical and experimental studies on the minimum size 2-edge-connected spanning subgraph problem. Master’s thesis, University of Ottawa, Ottawa, Canada (2013)

    Google Scholar 

  14. McKay, B.D.: Practical graph isomorphism. Congressus Numerantium 30, 45–87 (1981)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Boyd, S., Fu, Y., Sun, Y. (2014). A \(\frac{5}{4}\)-Approximation for Subcubic 2EC Using Circulations. In: Lee, J., Vygen, J. (eds) Integer Programming and Combinatorial Optimization. IPCO 2014. Lecture Notes in Computer Science, vol 8494. Springer, Cham. https://doi.org/10.1007/978-3-319-07557-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07557-0_16

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07556-3

  • Online ISBN: 978-3-319-07557-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics