iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-319-07317-0_4
Tutorial on Parameterized Model Checking of Fault-Tolerant Distributed Algorithms | SpringerLink
Skip to main content

Tutorial on Parameterized Model Checking of Fault-Tolerant Distributed Algorithms

  • Chapter
Formal Methods for Executable Software Models (SFM 2014)

Abstract

Recently we introduced an abstraction method for parameterized model checking of threshold-based fault-tolerant distributed algorithms. We showed how to verify distributed algorithms without fixing the size of the system a priori. As is the case for many other published abstraction techniques, transferring the theory into a running tool is a challenge. It requires understanding of several verification techniques such as parametric data and counter abstraction, finite state model checking and abstraction refinement. In the resulting framework, all these techniques should interact in order to achieve a possibly high degree of automation. In this tutorial we use the core of a fault-tolerant distributed broadcasting algorithm as a case study to explain the concepts of our abstraction techniques, and discuss how they can be implemented.

Some of the presented material has been published in [53,52] Supported by the Austrian National Research Network S11403 and S11405 (RiSE) of the Austrian Science Fund (FWF) and by the Vienna Science and Technology Fund (WWTF) through grants PROSEED.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. ByMC 0.4.0: Byzantine model checker (2013), http://forsyte.tuwien.ac.at/software/bymc/ (accessed March 2014)

  2. Spin 6.2.7 (2014), http://spinroot.com/ (accessed March 2014)

  3. Tempo toolset. Web page, http://www.veromodo.com/

  4. TLA – the temporal logic of actions. Web page, http://research.microsoft.com/en-us/um/people/lamport/tla/tla.html

  5. Yices 1.0.40 (2013), http://yices.csl.sri.com/yices1-documentation.shtml (accessed March 2014)

  6. Abdulla, P.A.: Regular model checking. International Journal on Software Tools for Technology Transfer 14, 109–118 (2012)

    Article  Google Scholar 

  7. Abdulla, P.A., Jonsson, B.: Verifying programs with unreliable channels. Inf. Comput. 127(2), 91–101 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: Consensus with Byzantine failures and little system synchrony. In: DSN, pp. 147–155 (2006)

    Google Scholar 

  9. Alberti, F., Ghilardi, S., Pagani, E., Ranise, S., Rossi, G.P.: Universal guards, relativization of quantifiers, and failure models in model checking modulo theories. JSAT 8(1/2), 29–61 (2012)

    MathSciNet  MATH  Google Scholar 

  10. Apt, K., Kozen, D.: Limits for automatic verification of finite-state concurrent systems. Inf. Process. Lett. 15, 307–309 (1986)

    Article  MathSciNet  Google Scholar 

  11. Attiya, H., Welch, J.: Distributed Computing, 2nd edn. John Wiley & Sons (2004)

    Google Scholar 

  12. Baier, C., Katoen, J.P., Larsen, K.G.: Principles of Model Checking. MIT Press (2008)

    Google Scholar 

  13. Ball, T., Majumdar, R., Millstein, T.D., Rajamani, S.K.: Automatic predicate abstraction of c programs. In: PLDI, pp. 203–213 (2001)

    Google Scholar 

  14. Behrmann, G., David, A., Larsen, K.G.: A tutorial on uppaal 4.0 (2006)

    Google Scholar 

  15. Biely, M., Charron-Bost, B., Gaillard, A., Hutle, M., Schiper, A., Widder, J.: Tolerating corrupted communication. In: PODC, pp. 244–253 (August 2007)

    Google Scholar 

  16. Biely, M., Schmid, U., Weiss, B.: Synchronous consensus under hybrid process and link failures. Theoretical Computer Science 412(40), 5602–5630 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Biere, A.: Handbook of satisfiability, vol. 185. IOS Press (2009)

    Google Scholar 

  18. Biere, A., Cimatti, A., Clarke, E.M., Fujita, M., Zhu, Y.: Symbolic model checking using SAT procedures instead of BDDs. In: DAC, pp. 317–320 (1999)

    Google Scholar 

  19. Bokor, P., Kinder, J., Serafini, M., Suri, N.: Efficient model checking of fault-tolerant distributed protocols. In: DSN, pp. 73–84 (2011)

    Google Scholar 

  20. Bracha, G., Toueg, S.: Asynchronous consensus and broadcast protocols. J. ACM 32(4), 824–840 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  21. Browne, M.C., Clarke, E.M., Grumberg, O.: Reasoning about networks with many identical finite state processes. Inf. Comput. 81, 13–31 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  22. Chambart, P., Schnoebelen, P.: Mixing lossy and perfect fifo channels. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 340–355. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  23. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed systems. J. ACM 43(2), 225–267 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  24. Charron-Bost, B., Debrat, H., Merz, S.: Formal verification of consensus algorithms tolerating malicious faults. In: Défago, X., Petit, F., Villain, V. (eds.) SSS 2011. LNCS, vol. 6976, pp. 120–134. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  25. Charron-Bost, B., Pedone, F., Schiper, A. (eds.): Replication: Theory and Practice. LNCS, vol. 5959. Springer, Heidelberg (2010)

    Google Scholar 

  26. Chou, C.T., Mannava, P., Park, S.: A simple method for parameterized verification of cache coherence protocols. In: Hu, A.J., Martin, A.K. (eds.) FMCAD 2004. LNCS, vol. 3312, pp. 382–398. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  27. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Clarke, E., Talupur, M., Veith, H.: Proving Ptolemy right: the environment abstraction framework for model checking concurrent systems. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 33–47. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  29. Clarke, E., Talupur, M., Touili, T., Veith, H.: Verification by network decomposition. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 276–291. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  30. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons using branching-time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981. LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982)

    Chapter  Google Scholar 

  31. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (1999)

    Google Scholar 

  32. Clarke, E., Talupur, M., Veith, H.: Environment abstraction for parameterized verification. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 126–141. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  33. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: POPL, pp. 238–252. ACM (1977)

    Google Scholar 

  34. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently computing static single assignment form and the control dependence graph. ACM Trans. Program. Lang. Syst. 13(4), 451–490 (1991)

    Article  Google Scholar 

  35. de Moura, L., Bjørner, N.S.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  36. De Prisco, R., Malkhi, D., Reiter, M.K.: On k-set consensus problems in asynchronous systems. IEEE Trans. Parallel Distrib. Syst. 12(1), 7–21 (2001)

    Article  MATH  Google Scholar 

  37. Dolev, D., Lynch, N.A., Pinter, S.S., Stark, E.W., Weihl, W.E.: Reaching approximate agreement in the presence of faults. J. ACM 33(3), 499–516 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  38. Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  39. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial synchrony. J. ACM 35(2), 288–323 (1988)

    Article  MathSciNet  Google Scholar 

  40. Emerson, E.A., Kahlon, V.: Reducing model checking of the many to the few. In: McAllester, D. (ed.) CADE 2000. LNCS, vol. 1831, pp. 236–254. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  41. Emerson, E., Namjoshi, K.: Reasoning about rings. In: POPL, pp. 85–94 (1995)

    Google Scholar 

  42. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one faulty process. J. ACM 32(2), 374–382 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  43. Fisman, D., Kupferman, O., Lustig, Y.: On verifying fault tolerance of distributed protocols. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 315–331. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  44. Fuegger, M., Schmid, U., Fuchs, G., Kempf, G.: Fault-Tolerant Distributed Clock Generation in VLSI Systems-on-Chip. In: EDCC 2006, pp. 87–96 (October 2006)

    Google Scholar 

  45. German, S.M., Sistla, A.P.: Reasoning about systems with many processes. J. ACM 39, 675–735 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  46. Graf, S., Saïdi, H.: Construction of abstract state graphs with pvs. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  47. Grumberg, O., Veith, H. (eds.): 25 Years of Model Checking. LNCS, vol. 5000. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  48. Halbwachs, N., Lagnier, F., Ratel, C.: Programming and verifying real-time systems by means of the synchronous data-flow language lustre. IEEE Trans. Softw. Eng. 18, 785–793 (1992)

    Article  MATH  Google Scholar 

  49. Holzmann, G.: The SPIN Model Checker: Primer and Reference Manual. Addison-Wesley Professional (2003)

    Google Scholar 

  50. Ip, C., Dill, D.: Verifying systems with replicated components in murφ. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 147–158. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  51. John, A., Konnov, I., Schmid, U., Veith, H., Widder, J.: Starting a dialog between model checking and fault-tolerant distributed algorithms. arXiv CoRR abs/1210.3839 (2012)

    Google Scholar 

  52. John, A., Konnov, I., Schmid, U., Veith, H., Widder, J.: Parameterized model checking of fault-tolerant distributed algorithms by abstraction. In: FMCAD, pp. 201–209 (2013)

    Google Scholar 

  53. John, A., Konnov, I., Schmid, U., Veith, H., Widder, J.: Towards modeling and model checking fault-tolerant distributed algorithms. In: Bartocci, E., Ramakrishnan, C.R. (eds.) SPIN 2013. LNCS, vol. 7976, pp. 209–226. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  54. Joshi, R., Lamport, L., Matthews, J., Tasiran, S., Tuttle, M.R., Yu, Y.: Checking cache-coherence protocols with TLA + . Formal Methods in System Design 22(2), 125–131 (2003)

    Article  MATH  Google Scholar 

  55. Kaynar, D.K., Lynch, N.A., Segala, R., Vaandrager, F.W.: The Theory of Timed I/O Automata. Synthesis Lectures on Computer Science. Morgan & Claypool (2006)

    Google Scholar 

  56. Kesten, Y., Pnueli, A.: Control and data abstraction: the cornerstones of practical formal verification. STTT 2, 328–342 (2000)

    Article  MATH  Google Scholar 

  57. Konnov, I., Veith, H., Widder, J.: Who is afraid of Model Checking Distributed Algorithms? (2012)

    Google Scholar 

  58. Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. 16, 133–169 (1998)

    Article  Google Scholar 

  59. Lamport, L.: Specifying Systems, The TLA+ Language and Tools for Hardware and Software Engineers. Addison-Wesley (2002)

    Google Scholar 

  60. Lamport, L.: The pluscal algorithm language. In: Leucker, M., Morgan, C. (eds.) ICTAC 2009. LNCS, vol. 5684, pp. 36–60. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  61. Lincoln, P., Rushby, J.: A formally verified algorithm for interactive consistency under a hybrid fault model. In: FTCS-23, pp. 402–411 (June 1993)

    Google Scholar 

  62. Lynch, N.: Distributed Algorithms. Morgan Kaufman, San Francisco (1996)

    Google Scholar 

  63. Lynch, N., Tuttle, M.: An introduction to input/output automata. Tech. Rep. MIT/LCS/TM-373, Laboratory for Computer Science, MIT (1989)

    Google Scholar 

  64. McMillan, K.: Symbolic model checking. Kluwer (1993)

    Google Scholar 

  65. McMillan, K.L.: Parameterized verification of the flash cache coherence protocol by compositional model checking. In: Margaria, T., Melham, T.F. (eds.) CHARME 2001. LNCS, vol. 2144, pp. 179–195. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  66. Mitra, S., Lynch, N.A.: Proving approximate implementations for probabilistic I/O automata. Electr. Notes Theor. Comput. Sci. 174(8), 71–93 (2007)

    Article  MATH  Google Scholar 

  67. Mostéfaoui, A., Mourgaya, E., Parvédy, P.R., Raynal, M.: Evaluating the condition-based approach to solve consensus. In: DSN, pp. 541–550 (2003)

    Google Scholar 

  68. O’Leary, J.W., Talupur, M., Tuttle, M.R.: Protocol verification using flows: An industrial experience. In: FMCAD, pp. 172–179 (2009)

    Google Scholar 

  69. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults. J. ACM 27(2), 228–234 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  70. Pnueli, A., Xu, J., Zuck, L.D.: Liveness with (0,1, ∞ )-counter abstraction. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 107–111. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  71. Powell, D.: Failure mode assumptions and assumption coverage. In: FTCS-22, Boston, MA, USA, pp. 386–395 (1992)

    Google Scholar 

  72. Santoro, N., Widmayer, P.: Time is not a healer. In: Cori, R., Monien, B. (eds.) STACS 1989. LNCS, vol. 349, pp. 304–313. Springer, Heidelberg (1989)

    Chapter  Google Scholar 

  73. Schmid, U., Weiss, B., Rushby, J.: Formally verified Byzantine agreement in presence of link faults. In: ICDCS, July 2-5, pp. 608–616 (2002)

    Google Scholar 

  74. Shoham, S., Grumberg, O.: 3-valued abstraction: More precision at less cost. Inf. Comput. 206(11), 1313–1333 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  75. Srikanth, T.K., Toueg, S.: Optimal clock synchronization. Journal of the ACM 34(3), 626–645 (1987)

    Article  MathSciNet  Google Scholar 

  76. Srikanth, T., Toueg, S.: Simulating authenticated broadcasts to derive simple fault-tolerant algorithms. Distributed Computing 2, 80–94 (1987)

    Article  Google Scholar 

  77. Suzuki, I.: Proving properties of a ring of finite-state machines. Inf. Process. Lett. 28(4), 213–214 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  78. Tsuchiya, T., Schiper, A.: Verification of consensus algorithms using satisfiability solving. Distributed Computing 23(5-6), 341–358 (2011)

    Article  MATH  Google Scholar 

  79. Widder, J., Biely, M., Gridling, G., Weiss, B., Blanquart, J.P.: Consensus in the presence of mortal Byzantine faulty processes. Distributed Computing 24(6), 299–321 (2012)

    Article  MATH  Google Scholar 

  80. Widder, J., Schmid, U.: Booting clock synchronization in partially synchronous systems with hybrid process and link failures. Distributed Computing 20(2), 115–140 (2007)

    Article  MATH  Google Scholar 

  81. Wöhrle, S., Thomas, W.: Model checking synchronized products of infinite transition systems. LMCS 3(4) (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gmeiner, A., Konnov, I., Schmid, U., Veith, H., Widder, J. (2014). Tutorial on Parameterized Model Checking of Fault-Tolerant Distributed Algorithms. In: Bernardo, M., Damiani, F., Hähnle, R., Johnsen, E.B., Schaefer, I. (eds) Formal Methods for Executable Software Models. SFM 2014. Lecture Notes in Computer Science, vol 8483. Springer, Cham. https://doi.org/10.1007/978-3-319-07317-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07317-0_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07316-3

  • Online ISBN: 978-3-319-07317-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics