iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-319-05582-4_16
Brainwave Variability Identification in Robotic Arm Control Strategy | SpringerLink
Skip to main content

Brainwave Variability Identification in Robotic Arm Control Strategy

  • Chapter
Robot Intelligence Technology and Applications 2

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 274))

Abstract

Neuronal activity, the fundamental source for bio-electric signals expresses the variability of brainwaves in humans. Brainwave and specific EEG spectral analysis are important in bio-electric signal variability identification. Recent researches in neuro-robotics rely on the use of brain computer interface (BCI) technology in developing robotic commands. Brainwave variability identification provides different levels of robot control signal development and optimization.

This paper presents the development of robotic arm control strategy using brainwave signal variability. The bio-electric signal identification was derived from physiological expressions. The physiological expressions are identified using spectral analysis and the paper presents possible future research options and applications towards using physiological and facial parameters in controlling robotic arm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Austin, J.H.: Zen and the Brain: Towards an Understanding of Meditation and Conciousness. MIT Press, Cambridge (1998)

    Google Scholar 

  2. Brunovsky, M., Matousek, M., Edman, A., Cervena, K., Krajca, V.: Object Assesment of the Degrees of Dementia by Means of EEG. Neuropsychobiology 48, 19–26 (2003)

    Article  Google Scholar 

  3. Cohen, M.E., Hudson, D.L.: EEG Analysis Based on Chaotic Evaluation of Variability. In: 23rd IEEE International Conference on Engineering in Medicine and Biology Society, vol. 4, pp. 3827–3830. IEEE, California (2001)

    Google Scholar 

  4. Gudmundsson, S., Runarsson, T.P., Sigurdsson, S., Eiriksdottir, G., Johnsen, K.: Reliability of Quantitative EEG Features. Cilinical Neurophysiology 118, 2162–2171 (2007)

    Article  Google Scholar 

  5. Krause, C., Sillanmaki, L., Koivisto, M., Saarela, C., Haggvist, A., Laine, M.: The Effects of memory Load on Event-Related EEG Desynchronization and synchronization. Clinical Neurophyisology 111(11), 2071–2078 (2000)

    Article  Google Scholar 

  6. Lopes da Silva, F.: Dynamics of EEGs as Signals of the Neuronal population: Models and Theoretical Considerations. In: Niedermeyer, E., Lopes da Silva, F. (eds.) Electroencephalography, Basic Principles, Clinical Applications and Related Fields, pp. 85–106. Lippincott Williams & Wilkins, Philadelphia (2005)

    Google Scholar 

  7. Perros, P., Young, E.S., Ritson, J.J., Price, G.W., Mann, P.: Power Spectral EEG Analysis and EEG Variability in Obsessive-Compulsive Disorder. Brain Topography 4(3), 187–192 (1992)

    Article  Google Scholar 

  8. Peterson, C.K., Harmon-Jones, E.: Circadian and Seasonal Variability of Resting Frontal EEG Asymmetry. Biological Psychology 80(3), 315–320 (2009)

    Article  Google Scholar 

  9. Stam, C.J., van Walsum, A.-M., van, C., Micheloyannis, S.: Variability of EEG Synchronization During a Working Memory task in Healthy Subjects. International Journal of Psychophysiology 46(1), 53–66 (2002)

    Article  Google Scholar 

  10. Travis, F., Tecce, J.J., Guttman, J.: Cortical Plasticity, Contingent Negative Variation and Trasscendent Experiences during the Practice of Transcendental Meditation Technique. Bilogical Psychology 55, 41–55 (2000)

    Google Scholar 

  11. Travis, F., Tecce, F., Arenander, J.J., Wallace, A.R.K.: Patterns of EEG Coherence, Powerand Contingent Negative Variation Characteriza the Integration of Transcendal and Walking States. Biological Psychology 61, 293–319 (2002)

    Article  Google Scholar 

  12. Vaitl, D., Birbaumer, N., Gruzelier, J., Jamieson, G.A., Kotchoubey, B., Kubler, A., Lehmann, D., Miltner, W.H., Ott, U., Putz, P., Sammer, G., Strauch, I., Strehl, U., Wackermann, J., Weiss, T.: Psychobiology of Altered States of Conciousness. Psychological Bulletin 131(1), 98–127 (2005)

    Article  Google Scholar 

  13. Cao, J., Chen, Z.: Advanced EEg Signal Processing in Brain Death Diagnosis. In: Mandic, D., Golz, M., Kuh, A., Obradovic, D., Tanaka, T. (eds.) Sinal Processing Techniques for Knowledge Extraction and Information Fusion, pp. 275–298. Springer Science+Business Media LLC, New York (2008)

    Chapter  Google Scholar 

  14. Oppenheim, A.V., Schafer, R.W.: Discrete-Time Signal Processing, pp. 447–448. Prentice Hall (1989)

    Google Scholar 

  15. WaveMetrics: IGOR Pro Manual, WaveMetrics, Portland, USA (2010)

    Google Scholar 

  16. Quiroga, R.Q.: Quantitative Analysis of EEG Signals: Tme Frequency Methods and Chaos Theory. Institute of Physiology and Institute of Signal Processing, Medical University Lubeck, Buenos Aires (1998)

    Google Scholar 

  17. Repovs, G.: Dealing with Noise in EEG Recording and Data Analysis. Infor. Med. Slov. 15(1), 18–25 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiemela Onunka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Onunka, C., Bright, G., Stopforth, R. (2014). Brainwave Variability Identification in Robotic Arm Control Strategy. In: Kim, JH., Matson, E., Myung, H., Xu, P., Karray, F. (eds) Robot Intelligence Technology and Applications 2. Advances in Intelligent Systems and Computing, vol 274. Springer, Cham. https://doi.org/10.1007/978-3-319-05582-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05582-4_16

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05581-7

  • Online ISBN: 978-3-319-05582-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics