Abstract
Neuronal activity, the fundamental source for bio-electric signals expresses the variability of brainwaves in humans. Brainwave and specific EEG spectral analysis are important in bio-electric signal variability identification. Recent researches in neuro-robotics rely on the use of brain computer interface (BCI) technology in developing robotic commands. Brainwave variability identification provides different levels of robot control signal development and optimization.
This paper presents the development of robotic arm control strategy using brainwave signal variability. The bio-electric signal identification was derived from physiological expressions. The physiological expressions are identified using spectral analysis and the paper presents possible future research options and applications towards using physiological and facial parameters in controlling robotic arm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Austin, J.H.: Zen and the Brain: Towards an Understanding of Meditation and Conciousness. MIT Press, Cambridge (1998)
Brunovsky, M., Matousek, M., Edman, A., Cervena, K., Krajca, V.: Object Assesment of the Degrees of Dementia by Means of EEG. Neuropsychobiology 48, 19–26 (2003)
Cohen, M.E., Hudson, D.L.: EEG Analysis Based on Chaotic Evaluation of Variability. In: 23rd IEEE International Conference on Engineering in Medicine and Biology Society, vol. 4, pp. 3827–3830. IEEE, California (2001)
Gudmundsson, S., Runarsson, T.P., Sigurdsson, S., Eiriksdottir, G., Johnsen, K.: Reliability of Quantitative EEG Features. Cilinical Neurophysiology 118, 2162–2171 (2007)
Krause, C., Sillanmaki, L., Koivisto, M., Saarela, C., Haggvist, A., Laine, M.: The Effects of memory Load on Event-Related EEG Desynchronization and synchronization. Clinical Neurophyisology 111(11), 2071–2078 (2000)
Lopes da Silva, F.: Dynamics of EEGs as Signals of the Neuronal population: Models and Theoretical Considerations. In: Niedermeyer, E., Lopes da Silva, F. (eds.) Electroencephalography, Basic Principles, Clinical Applications and Related Fields, pp. 85–106. Lippincott Williams & Wilkins, Philadelphia (2005)
Perros, P., Young, E.S., Ritson, J.J., Price, G.W., Mann, P.: Power Spectral EEG Analysis and EEG Variability in Obsessive-Compulsive Disorder. Brain Topography 4(3), 187–192 (1992)
Peterson, C.K., Harmon-Jones, E.: Circadian and Seasonal Variability of Resting Frontal EEG Asymmetry. Biological Psychology 80(3), 315–320 (2009)
Stam, C.J., van Walsum, A.-M., van, C., Micheloyannis, S.: Variability of EEG Synchronization During a Working Memory task in Healthy Subjects. International Journal of Psychophysiology 46(1), 53–66 (2002)
Travis, F., Tecce, J.J., Guttman, J.: Cortical Plasticity, Contingent Negative Variation and Trasscendent Experiences during the Practice of Transcendental Meditation Technique. Bilogical Psychology 55, 41–55 (2000)
Travis, F., Tecce, F., Arenander, J.J., Wallace, A.R.K.: Patterns of EEG Coherence, Powerand Contingent Negative Variation Characteriza the Integration of Transcendal and Walking States. Biological Psychology 61, 293–319 (2002)
Vaitl, D., Birbaumer, N., Gruzelier, J., Jamieson, G.A., Kotchoubey, B., Kubler, A., Lehmann, D., Miltner, W.H., Ott, U., Putz, P., Sammer, G., Strauch, I., Strehl, U., Wackermann, J., Weiss, T.: Psychobiology of Altered States of Conciousness. Psychological Bulletin 131(1), 98–127 (2005)
Cao, J., Chen, Z.: Advanced EEg Signal Processing in Brain Death Diagnosis. In: Mandic, D., Golz, M., Kuh, A., Obradovic, D., Tanaka, T. (eds.) Sinal Processing Techniques for Knowledge Extraction and Information Fusion, pp. 275–298. Springer Science+Business Media LLC, New York (2008)
Oppenheim, A.V., Schafer, R.W.: Discrete-Time Signal Processing, pp. 447–448. Prentice Hall (1989)
WaveMetrics: IGOR Pro Manual, WaveMetrics, Portland, USA (2010)
Quiroga, R.Q.: Quantitative Analysis of EEG Signals: Tme Frequency Methods and Chaos Theory. Institute of Physiology and Institute of Signal Processing, Medical University Lubeck, Buenos Aires (1998)
Repovs, G.: Dealing with Noise in EEG Recording and Data Analysis. Infor. Med. Slov. 15(1), 18–25 (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Onunka, C., Bright, G., Stopforth, R. (2014). Brainwave Variability Identification in Robotic Arm Control Strategy. In: Kim, JH., Matson, E., Myung, H., Xu, P., Karray, F. (eds) Robot Intelligence Technology and Applications 2. Advances in Intelligent Systems and Computing, vol 274. Springer, Cham. https://doi.org/10.1007/978-3-319-05582-4_16
Download citation
DOI: https://doi.org/10.1007/978-3-319-05582-4_16
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-05581-7
Online ISBN: 978-3-319-05582-4
eBook Packages: EngineeringEngineering (R0)