iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-319-04277-0_2
Multipath Algorithms and Strategies to Improve TCP Performance over Wireless Mesh Networks | SpringerLink
Skip to main content

Multipath Algorithms and Strategies to Improve TCP Performance over Wireless Mesh Networks

  • Conference paper
Mobile Networks and Management (MONAMI 2013)

Abstract

The remarkable growth at the worldwide wireless device sales, together with the cost reduction of the subjacent technologies, has lead to a situation in which most of this type of terminals carry more than one interface to access the network, through potentially different radio access technologies. This fact has fostered the interest of the research community to address new solutions to exploit the possibility of launching multiple simultaneous transmissions through multiple interfaces. In this work we evaluate three different routing algorithms (link, node and zone disjoint) that aim to discover the optimal route configuration of disjoint paths over a wireless mesh network. We use the obtained results to evaluate, by means of simulation, the performance of the MultiPath TCP (MPTCP) protocol, which allows the simultaneous delivery of traffic across multiple paths, showing that the aggregated performance is significatively higher than the one achieved by the traditional single-path and single-flow TCP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. MPTCP - Linux Kernel implementation, http://mptcp.info.ucl.ac.be/pmwiki.php?n=Main.HomePage

  2. The ns-3 network simulator, http://www.nsnam.org/

  3. Source code and documentation of the MPTCP implementation (ns-3.13), https://github.com/dgomezunican/multipath-ns3.13

  4. Chihani, B., Collange, D.: A multipath TCP model for ns-3 simulator. CoRR abs/1112.1932 (2011)

    Google Scholar 

  5. Clausen, T., Jacquet, P.: Optimized Link State Routing Protocol (OLSR). RFC 3626 (Experimental) (October 2003), http://www.ietf.org/rfc/rfc3626.txt

  6. Ford, A., Raiciu, C., Handley, M., Barre, S., Iyengar, J.: Architectural Guidelines for Multipath TCP Development. RFC 6182 (Informational) (March 2011), http://www.ietf.org/rfc/rfc6182.txt

  7. Ford, A., Raiciu, C., Handley, M., Bonaventure, O.: TCP Extensions for Multipath Operation with Multiple Addresses. RFC (6824) (January 2013), http://www.ietf.org/rfc/rfc6824.txt

  8. Hsieh, H.Y., Sivakumar, R.: A transport layer approach for achieving aggregate bandwidths on multi-homed mobile hosts. In: Proceedings of the 8th Annual International Conference on Mobile Computing and Networking, MobiCom 2002, pp. 83–94. ACM, New York (2002), http://doi.acm.org/10.1145/570645.570656

    Google Scholar 

  9. Lim, M., Valdez, J.: MPTCP Wireless performance, http://reproducingnetworkresearch.wordpress.com/2012/06/06/mptcp-wireless-performance-draft/

  10. Magalhaes, L., Kravets, R.H.: Transport level mechanisms for bandwidth aggregation on mobile hosts. In: Ninth International Conference on Network Protocols, pp. 165–171 (November 2001)

    Google Scholar 

  11. Meghanathan, N.: Stability and hop count of node-disjoint and link-disjoint multi-path routes in ad hoc networks. In: Third IEEE International Conference on Wireless and Mobile Computing, Networking and Communications, WiMOB 2007, pp. 42–42 (2007)

    Google Scholar 

  12. Meghanathan, N.: Performance comparison of link, node and zone disjoint multi-path routing strategies and minimum hop single path routing for mobile ad hoc networks. CoRR abs/1011.5021 (2010)

    Google Scholar 

  13. Nguyen, S.C., Nguyen, T.M.T.: Evaluation of multipath TCP load sharing with coupled congestion control option in heterogeneous networks. In: Global Information Infrastructure Symposium (GIIS), pp. 1–5 (2011)

    Google Scholar 

  14. Perkins, C., Belding-Royer, E., Das, S.: Ad hoc On-Demand Distance Vector (AODV) Routing. RFC 3561 (Experimental) (July 2003), http://www.ietf.org/rfc/rfc3561.txt

  15. Raiciu, C., Paasch, C., Barre, S., Ford, A., Honda, M., Duchene, F., Bonaventure, O., Handley, M.: How hard can it be? designing and implementing a deployable multipath TCP. In: Proceedings of the 9th USENIX Conference on Networked Systems Design and Implementation, NSDI 2012, pp. 29–29. USENIX Association, Berkeley (2012), http://dl.acm.org/citation.cfm?id=2228298.2228338

    Google Scholar 

  16. Raiciu, C., Wischik, D., Handley, M.: Practical congestion control for multipath transport protocols. UCL Technical Report (6824) (January 2009)

    Google Scholar 

  17. Raiciu, C., Wischik, M.H.D.: Coupled Congestion Control for Multipath Transport Protocols. RFC (6356) (January 2011), http://www.ietf.org/rfc/rfc6356.txt

  18. Stewart, R.: Stream Control Transmission Protocol. RFC 4960 (Proposed Standard) (September 2007), (updated by RFC 6096) http://www.ietf.org/rfc/rfc4960.txt

  19. Waharte, S., Boutaba, R.: Totally disjoint multipath routing in multihop wireless networks. In: IEEE International Conference on Communications, ICC 2006, vol. 12, pp. 5576–5581 (2006)

    Google Scholar 

  20. Wischik, D., Handley, M., Braun, M.B.: The resource pooling principle. SIGCOMM Comput. Commun. Rev. 38(5), 47–52 (2008), http://doi.acm.org/10.1145/1452335.1452342

    Article  Google Scholar 

  21. Yang, Y., Wang, J., Kravets, R.: Interference-aware load balancing for multihop wireless networks. Technical Report (2005)

    Google Scholar 

  22. Zhang, M., Lai, J., Krishnamurthy, A., Peterson, L., Wang, R.: A transport layer approach for improving end-to-end performance and robustness using redundant paths. In: Proceedings of the Annual Conference on USENIX Annual Technical Conference, ATEC 2004, p. 8. USENIX Association, Berkeley (2004), http://dl.acm.org/citation.cfm?id=1247415.1247423

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Gómez, D., Rabadán, C., Garrido, P., Agüero, R. (2013). Multipath Algorithms and Strategies to Improve TCP Performance over Wireless Mesh Networks. In: Pesch, D., Timm-Giel, A., Calvo, R.A., Wenning, BL., Pentikousis, K. (eds) Mobile Networks and Management. MONAMI 2013. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 125. Springer, Cham. https://doi.org/10.1007/978-3-319-04277-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04277-0_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04276-3

  • Online ISBN: 978-3-319-04277-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics