Abstract
Alert correlation is a system which receives alerts from heterogeneous Intrusion Detection Systems and reduces false alerts, detects high level patterns of attacks, increases the meaning of occurred incidents, predicts the future states of attacks, and detects root cause of attacks. To reach these goals, many algorithms have been introduced in the world with many advantages and disadvantages. In this paper, we are trying to present a comprehensive survey on already proposed alert correlation algorithms. The approach of this survey is mainly focused on algorithms in correlation engines which can work in enterprise and practical networks. Having this aim in mind, many features related to accuracy, functionality, and computation power are introduced and all algorithm categories are assessed with these features. The result of this survey shows that each category of algorithms has its own strengths and an ideal correlation frameworks should be carried the strength feature of each category.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Tjhai, G.C., Papadaki, M., Furnell, S.M., Clarke, N.L.: Investigating the Problem of IDS False Alarms: An Experimental Study Using Snort. In: Proceedings of the IFIP TC 11 23rd International Information Security Conference, pp. 253–267 (2008)
Pouget, F., Dacier, M.: Alert Correlation: Review of the state of the art. EURECOM, Technical Report (2003)
Sadoddin, R., Ghorbani, A.: Alert correlation survey: Framework and techniques. In: Proceedings of ACM International Conference on Privacy, Security and Trust: Bridge the Gap Between PST Technologies and Business Services (2006)
Al-Mamory, S.O., Zhang, H.: A survey on IDS alerts processing techniques. In: Proceeding of the 6th WSEAS International Conference on Information Security and Privacy (ISP), pp. 69–78 (2007)
Valdes, A., Skinner, K.: Probabilistic alert correlation. In: Lee, W., Mé, L., Wespi, A. (eds.) RAID 2001. LNCS, vol. 2212, pp. 54–68. Springer, Heidelberg (2001)
Debar, H., Wespi, A.: Aggregation and correlation of intrusion-detection alerts. In: Lee, W., Mé, L., Wespi, A. (eds.) RAID 2001. LNCS, vol. 2212, pp. 85–103. Springer, Heidelberg (2001)
Cuppens, F.: Managing alerts in a multi-intrusion detection environment. In: Proceedings of the 17th Annual Computer Security Applications Conference, ACSAC (2001)
Valeur, F., Vigna, G., Kruegel, C., Kemmerer, R.A.: Comprehensive approach to intrusion detection alert correlation. IEEE Transactions on Dependable and Secure Computing, 146–169 (2004)
Elshoush, H.T., Osman, I.M.: Intrusion Alert Correlation Framework: An Innovative Approach. In: IAENG Transactions on Engineering Technologies, pp. 405–420 (2013)
Julisch, K.: Mining alarm clusters to improve alarm handling efficiency. In: Proceedings of 17th Annual Computer Security Applications Conference (ACSAC), pp. 12–21 (2001)
Julisch, K.: Clustering intrusion detection alarms to support root cause analysis. ACM Journal Name 2(3), 111–138 (2002)
Al-Mamory, S.O., Zhang, H.: IDS alerts correlation using grammar-based approach. Journal of Computer Virology 5(4), 271–282 (2009)
Dain, O.M., Cunningham, R.K.: Building scenarios from a heterogeneous alert stream. In: Proceedings of IEEE Workshop on Information Assurance and Security (2001)
Dain, O., Cunningham, R.K.: Fusing a heterogeneous alert stream into scenarios. In: Proceedings of ACM Workshop on Data Mining for Security Applications, pp. 1–13 (2001)
Smith, R., Japkowicz, N., Dondo, M., Mason, P.: Using unsupervised learning for network alert correlation. In: Advances in Artificial Intelligence, pp. 308–319 (2008)
Smith, R., Japkowicz, N., Dondo, M.: Clustering using an autoassociator: A case study in network event correlation. In: Proceedings of the 17th IASTED International Conference on Parallel and Distributed Computing and Systems (2008)
Pietraszek, T., Tanner, A.: Data mining and machine learning towards reducing false positives in intrusion detection. Information Security 10(3), 169–183 (2005)
Pietraszek, T.: Using adaptive alert classification to reduce false positives in intrusion detection. In: Jonsson, E., Valdes, A., Almgren, M. (eds.) RAID 2004. LNCS, vol. 3224, pp. 102–124. Springer, Heidelberg (2004)
Templeton, S.J., Levitt, K.: A requires/provides model for computer attacks. In: Proceedings of the Workshop on New Security Paradigms, pp. 31–38 (2001)
Ning, P., Cui, Y.: An intrusion alert correlator based on pre-requisites of intrusions (2002)
Ning, P., Cui, Y., Reeves, D.S.: Constructing attack scenarios through correlation of intrusion alerts. In: Proceedings of the 9th ACM on Computer and Communications Security, pp. 245–254 (2002)
Ning, P., Cui, Y., Reeves, D.S., Xu, D.: Techniques and tools for analyzing intrusion alerts. ACM Transactions on Information and System Security (TISSEC) 7(2), 274–318 (2004)
Cuppens, F., Autrel, F., Miege, A., Benferhat, S.: Correlation in an intrusion detection process. In: Proceedings SEcurite des Communications sur Internet (SECI), pp. 153–171 (2002)
Ning, P., Xu, D.: Learning attack strategies from intrusion alerts. In: Proceedings of the 10th ACM Conference on Computer and Communications Security (CCS), pp. 200–209 (2003)
Ning, P., Cui, Y., Reeves, D.S.: Analyzing intensive intrusion alerts via correlation. In: Wespi, A., Vigna, G., Deri, L. (eds.) RAID 2002. LNCS, vol. 2516, pp. 74–94. Springer, Heidelberg (2002)
Ning, P., Cui, Y., Reeves, D.S., Xu, D.: Towards automating intrusion alert analysis. In: Workshop on Statistical and Machine Learning Techniques in Computer Intrusion Detection (2003)
Ning, P., Xu, D.: Hypothesizing and reasoning about attacks missed by intrusion detection systems. ACM Transactions on Information and System Security (TISSEC) 7(4), 591–627 (2004)
Ning, P., Xu, D., Healey, C.G., Amant, R.S.: Building attack scenarios through integration of complementary alert correlation methods. In: Proceedings of the 11th Annual Network and Distributed System Security Symposium, NDSS (2004)
Zhai, Y., Ning, P., Iyer, P., Reeves, D.S.: Reasoning about complementary intrusion evidence. In: 20th Annual IEEE Computer Security Applications Conference (ACSAC), pp. 39–48 (2004)
Wang, L., Liu, A., Jajodia, S.: An efficient and unified approach to correlating, hypothesizing, and predicting intrusion alerts. In: De Capitani di Vimercati, S.,Syverson, P.F., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 247–266. Springer, Heidelberg (2005)
Wang, L., Liu, A., Jajodia, S.: Using attack graphs for correlating, hypothesizing, and predicting intrusion alerts. Computer Communications 29(15), 2917–2933 (2006)
Zali, Z., Hashemi, M.R., Saidi, H.: Real-Time Intrusion Detection Alert Correlation and Attack Scenario Extraction Based on the Prerequisite-Consequence Approach. The ISC International Journal of Information Security 4(2) (2013)
Cheung, S., Lindqvist, U., Fong, M.W.: Modelling multistep cyber-attacks for scenario recognition. In: DARPA Information Survivability Conference and Exposition, pp. 284–292 (2003)
Eckmann, S.T., Vigna, G., Kemmerer, R.A.: STATL: An attack language for state-based intrusion detection. Journal of Computer Security 10(1/2), 71–104 (2002)
Cuppens, F., Ortalo, R.: LAMBDA: A language to model a database for detection of attacks. In: Debar, H., Mé, L., Wu, S.F. (eds.) RAID 2000. LNCS, vol. 1907, pp. 197–216. Springer, Heidelberg (2000)
Morin, B., Mé, L., Debar, H., Ducassé, M.: M2D2: A formal data model for IDS alert correlation. In: Wespi, A., Vigna, G., Deri, L. (eds.) RAID 2002. LNCS, vol. 2516, pp. 115–137. Springer, Heidelberg (2002)
Morin, B., Mé, L., Debar, H., Ducassé, M.: A logic-based model to support alert correlation in intrusion detection. Information Fusion 10(4), 285–299 (2009)
Al-Mamory, S.O., Zhang, H.: Intrusion detection alarms reduction using root cause Analysis and clustering. Computer Communications 32(2), 419–430 (2009)
Kabiri, P., Ghorbani, A.A.: A rule-based temporal alert correlation system. International Journal of Network Security 5(1), 66–72 (2007)
Viinikka, J., Debar, H.: Monitoring IDS background noise using EWMA control charts and alert information. In: Jonsson, E., Valdes, A., Almgren, M. (eds.) RAID 2004. LNCS, vol. 3224, pp. 166–187. Springer, Heidelberg (2004)
Viinikka, J., Debar, H., Mé, L., Séguier, R.: Time series modelling for IDS alert management. In: Proceedings of Information, Computer and Communications Security, pp. 102–113 (2006)
Viinikka, J., Debar, H., Mé, L., Lehikoinen, A., Tarvainen, M.: Processing intrusion detection alert aggregates with time series modelling. Information Fusion 10(4), 312–324 (2009)
Manganaris, S., Christensen, M., Zerkle, D., Hermiz, K.: A data mining Analysis of RTID alarms. Computer Networks 34(4), 571–577 (2000)
Treinen, J.J., Thurimella, R.: A framework for the application of association rule mining in large intrusion detection infrastructures. In: Zamboni, D., Kruegel, C. (eds.) RAID 2006. LNCS, vol. 4219, pp. 1–18. Springer, Heidelberg (2006)
Ren, H., Stakhanova, N., Ghorbani, A.A.: An online adaptive approach to alert correlation. In: Kreibich, C., Jahnke, M. (eds.) DIMVA 2010. LNCS, vol. 6201, pp. 153–172. Springer, Heidelberg (2010)
Lee, W., Qin, X.: Statistical causality Analysis of INFOSEC alert data. In: Managing Cyber Threats, pp. 101–127 (2003)
Qin, X., Lee, W.: Attack plan recognition and prediction using causal networks. In: 20th Annual Computer Security Applications Conference (ACSAC), pp. 370–379 (2004)
Qin, X., Lee, W.: Discovering novel attack strategies from INFOSEC alerts. In: Data Warehousing and Data Mining Techniques for Cyber Security, pp. 109–157 (2007)
Geib, C.W., Goldman, R.P.: Plan recognition in intrusion detection systems. In: DARPA Information Survivability Conference and Exposition, pp. 46–55 (2001)
Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: Optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics 26(1), 29–41 (1996)
Ourston, D., Matzner, S., Stump, W., Hopkins, B.: Applications of hidden markov models to detecting multi-stage network attacks. In: Proceedings of the 36th Annual IEEE Hawaii International Conference on System Sciences (2003)
Gu, G., Cardenas, A.A., Lee, W.: Principled reasoning and practical applications of alert fusion in intrusion detection systems. In: Proceedings of ACM Symposium on Information, Computer and Communications Security, pp. 136–147 (2008)
Siraj, A., Vaughn, R.B.: Multi-level alert clustering for intrusion detection sensor data. In: Annual Meeting of the North American on Fuzzy Information Processing Society, pp. 748–753 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer International Publishing Switzerland
About this paper
Cite this paper
Mirheidari, S.A., Arshad, S., Jalili, R. (2013). Alert Correlation Algorithms: A Survey and Taxonomy. In: Wang, G., Ray, I., Feng, D., Rajarajan, M. (eds) Cyberspace Safety and Security. CSS 2013. Lecture Notes in Computer Science, vol 8300. Springer, Cham. https://doi.org/10.1007/978-3-319-03584-0_14
Download citation
DOI: https://doi.org/10.1007/978-3-319-03584-0_14
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-03583-3
Online ISBN: 978-3-319-03584-0
eBook Packages: Computer ScienceComputer Science (R0)